Keras深度学习实战(9)——卷积神经网络的局限性

本文探讨了卷积神经网络(CNN)的局限性,通过性别分类任务展示了当训练数据集图像尺寸较大时,模型需要更长时间训练且效果可能不佳。对比不同尺寸图像的训练结果,发现在图像尺寸较小的情况下,CNN表现更优。同时,通过使用更大池化层处理大尺寸图像,可以改善模型性能,但可能导致过拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

《卷积神经网络详解与实现》中,我们已经看到了卷积神经网络 (Convolutional Neural Network, CNN) 的强大性能。虽然卷积神经网络的局部连接、权值共享和层次化表达等特性保证了网络模型可以有效的从大量样本中学习到数据的相应特征、避免了复杂的特征提取过程,但与其它模型一样,卷积神经网络同样也具有一定的局限性,本节将通过一系列实战来介绍卷积神经网络的一些局限性。

1. 卷积神经网络的局限性

为了了解卷积神经网络的局限性,我们继续使用在《卷积神经网络实现性别分类》中进行的任务,即尝试识别给定的图像中的人物性别。在继续介绍之前,首先回顾下卷积神经网络预测图像中对象类别的简要流程:

  • 不同卷积核通常可以识别由图像的不同部分:
    • 例如,识别图像中的特定图案,鼻子、头发
  • 池化层可以确保图像尺寸变换后也能被很好的识别:
    • 在增加池化操作后,图像的尺寸会变小&#
评论 45
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值