Keras深度学习实战(9)——卷积神经网络的局限性
0. 前言
在《卷积神经网络详解与实现》中,我们已经看到了卷积神经网络 (Convolutional Neural Network
, CNN
) 的强大性能。虽然卷积神经网络的局部连接、权值共享和层次化表达等特性保证了网络模型可以有效的从大量样本中学习到数据的相应特征、避免了复杂的特征提取过程,但与其它模型一样,卷积神经网络同样也具有一定的局限性,本节将通过一系列实战来介绍卷积神经网络的一些局限性。
1. 卷积神经网络的局限性
为了了解卷积神经网络的局限性,我们继续使用在《卷积神经网络实现性别分类》中进行的任务,即尝试识别给定的图像中的人物性别。在继续介绍之前,首先回顾下卷积神经网络预测图像中对象类别的简要流程:
- 不同卷积核通常可以识别由图像的不同部分:
- 例如,识别图像中的特定图案,鼻子、头发
- 池化层可以确保图像尺寸变换后也能被很好的识别:
- 在增加池化操作后,图像的尺寸会变小&#