1. 多项式螺旋
曲率:
κ
(
s
)
=
a
0
+
a
1
s
+
a
2
s
2
+
a
3
s
3
+
a
4
s
4
+
a
5
s
5
\begin{align} \kappa(s) = a_0 + a_1s + a_2s^2 + a_3s^3 + a_4s^4 + a_5s^5 \end{align}
κ(s)=a0+a1s+a2s2+a3s3+a4s4+a5s5
机器人朝向:
θ
(
s
)
=
a
0
s
+
a
1
s
2
2
+
a
2
s
3
3
+
a
3
s
4
4
+
a
4
s
5
5
+
a
5
s
6
6
\begin{align} \theta(s) = a_0s + \frac{a_1s^2}{2} + \frac{a_2s^3}{3} + \frac{a_3s^4}{4} + \frac{a_4s^5}{5} + \frac{a_5s^6}{6} \end{align}
θ(s)=a0s+2a1s2+3a2s3+4a3s4+5a4s5+6a5s6
轨迹:
x
(
s
)
=
∫
0
s
cos
(
θ
(
s
)
)
d
s
\begin{align} x(s) = \int_0^s{\cos(\theta(s))ds} \end{align}
x(s)=∫0scos(θ(s))ds
y
(
s
)
=
∫
0
s
sin
(
θ
(
s
)
)
d
s
\begin{align} y(s) = \int_0^s{\sin(\theta(s))ds} \end{align}
y(s)=∫0ssin(θ(s))ds
2. 边界条件
初始条件:
s
=
0
,
x
=
0
,
y
=
0
,
θ
=
0
s = 0,x = 0, y = 0, \theta = 0
s=0,x=0,y=0,θ=0
结束条件:
s
=
s
f
,
x
=
x
f
,
y
=
y
f
,
θ
=
θ
f
s = s_f, x = x_f, y = y_f, \theta = \theta_f
s=sf,x=xf,y=yf,θ=θf
x
b
=
[
x
f
y
f
θ
f
]
T
\begin{align} \bf{x_b} = \left[ x_f \ y_f \ \theta_f \right]^T \end{align}
xb=[xf yf θf]T
参数:
q
=
[
a
0
a
1
a
2
a
3
a
4
a
5
s
f
]
T
\begin{align} \bf{q} = \left[a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ s_f \right]^T \end{align}
q=[a0 a1 a2 a3 a4 a5 sf]T
边界条件:
g
(
q
)
=
h
(
q
)
−
x
b
=
{
x
(
s
f
)
−
x
f
=
0
y
(
s
f
)
−
y
f
=
0
θ
(
s
f
)
−
θ
f
=
0
\begin{align} \bf{g(q)} = \bf{h(q)} - \bf{x_b} = \begin{cases} x(s_f) - x_f = 0 \\ y(s_f) - y_f = 0 \\ \theta(s_f) - \theta_f = 0 \end{cases} \end{align}
g(q)=h(q)−xb=⎩
⎨
⎧x(sf)−xf=0y(sf)−yf=0θ(sf)−θf=0
3. 优化问题
minimize:
J
(
q
)
=
1
2
∫
0
s
f
[
κ
(
q
)
]
2
d
s
\begin{align} J(\bf{q}) = \frac{1}{2}\int_0^{s_f}[\kappa(\bf{q})]^2ds \end{align}
J(q)=21∫0sf[κ(q)]2ds
subject to:
g
(
q
)
=
0
s
f
f
r
e
e
\begin{align} \bf{g(q)} = 0 \quad s_f \quad free \end{align}
g(q)=0sffree
4. Hamiltonian
H ( q , λ ) = J ( q ) + λ T g ( q ) \begin{align} \bf{H}(\bf{q}, \bf{\lambda}) = J(\bf{q}) + \bf{\lambda}^T \bf{g(q)} \end{align} H(q,λ)=J(q)+λTg(q)
5. 参数更新方程
看着和牛顿二阶梯度法形式一致:
H
Δ
x
=
−
J
T
\begin{align} \bf{H}\Delta \bf{x} = -\bf{J}^T \end{align}
HΔx=−JT
H
=
[
δ
2
H
δ
q
2
(
q
,
λ
)
δ
δ
q
g
(
q
)
T
δ
δ
q
g
(
q
)
0
]
\begin{align} \bf{H} = \begin{bmatrix} \frac{\delta^2 \bf{H}}{\delta \bf{q}^2}(\bf{q}, \bf{\lambda}) & \frac{\delta}{\delta \bf{q}} \bf{g}(\bf{q})^T \\ \frac{\delta}{\delta \bf{q}}\bf{g}(\bf{q}) & \bf{0} \end{bmatrix} \end{align}
H=[δq2δ2H(q,λ)δqδg(q)δqδg(q)T0]
Δ
x
=
[
Δ
q
Δ
λ
]
\begin{align} \Delta \bf{x} = \begin{bmatrix} \Delta \bf{q} \\ \Delta \bf{\lambda} \end{bmatrix} \end{align}
Δx=[ΔqΔλ]
J
T
=
[
(
δ
δ
q
H
(
q
,
λ
)
)
T
g
(
q
)
]
\begin{align} \bf{J^T} = \begin{bmatrix} \bigg(\frac{\delta}{\delta \bf{q}}\bf{H}(\bf{q},\bf{\lambda})\bigg)^T \\ \bf{g}(\bf{q}) \end{bmatrix} \end{align}
JT=
(δqδH(q,λ))Tg(q)
H = [ H 7 x 7 H 3 x 7 T H 3 x 7 0 3 x 3 ] \begin{align} \bf{H} = \begin{bmatrix} \bf{H}_{7x7} & \bf{H}_{3x7}^T \\ \bf{H}_{3x7} & \bf{0}_{3x3} \end{bmatrix} \end{align} H=[H7x7H3x7H3x7T03x3]
H 7 x 7 = δ 2 J ( q ) δ q 2 + δ 2 ( λ T g ( q ) ) δ q 2 = δ 2 J ( q ) δ q 2 + λ 0 δ 2 x ( s f ) δ q 2 + λ 1 δ 2 y ( s f ) δ q 2 + λ 2 δ 2 θ ( s f ) δ q 2 = [ s f s f 2 2 s f 3 3 s f 4 4 s f 5 5 s f 6 6 κ f s f 2 2 s f 3 3 s f 4 4 s f 5 5 s f 6 6 s f 7 7 s f κ f s f 3 3 s f 4 4 s f 5 5 s f 6 6 s f 7 7 s f 8 8 s f 2 κ f s f 4 4 s f 5 5 s f 6 6 s f 7 7 s f 8 8 s f 9 9 s f 3 κ f s f 5 5 s f 6 6 s f 7 7 s f 8 8 s f 9 9 s f 10 10 s f 4 κ f s f 6 6 s f 7 7 s f 8 8 s f 9 9 s f 10 10 s f 11 11 s f 5 κ f κ f s f κ f s f 2 κ f s f 3 κ f s f 4 κ f s f 5 κ f k f k f ′ ] + λ 0 [ − C 2 ( s f ) − 1 2 C 3 ( s f ) − 1 3 C 4 ( s f ) − 1 4 C 5 ( s f ) − 1 5 C 6 ( s f ) − 1 6 C 7 ( s f ) − − s f s θ f − 1 2 C 3 ( s f ) − 1 4 C 4 ( s f ) − 1 6 C 5 ( s f ) − 1 8 C 6 ( s f ) − 1 10 C 7 ( s f ) − 1 12 C 8 ( s f ) − 1 2 s f 2 s θ f − 1 3 C 4 ( s f ) − 1 6 C 5 ( s f ) − 1 9 C 6 ( s f ) − 1 12 C 7 ( s f ) − 1 15 C 8 ( s f ) − 1 18 C 9 ( s f ) − 1 3 s f 3 s θ f − 1 4 C 5 ( s f ) − 1 8 C 6 ( s f ) − 1 12 C 7 ( s f ) − 1 16 C 8 ( s f ) − 1 20 C 9 ( s f ) − 1 24 C 10 ( s f ) − 1 4 s f 4 s θ f − 1 5 C 6 ( s f ) − 1 10 C 7 ( s f ) − 1 15 C 8 ( s f ) − 1 20 C 9 ( s f ) − 1 25 C 10 ( s f ) − 1 30 C 11 ( s f ) − 1 5 s f 5 s θ f − 1 6 C 7 ( s f ) − 1 12 C 8 ( s f ) − 1 18 C 9 ( s f ) − 1 24 C 10 ( s f ) − 1 30 C 11 ( s f ) − 1 36 C 12 ( s f ) − 1 6 s f 6 s θ f − s f s θ f − 1 2 s f 2 s θ f − 1 3 s f 3 s θ f − 1 4 s f 4 s θ f − 1 5 s f 5 s θ f − 1 6 s f 6 s θ f − κ f s θ f ] + λ 1 [ − S 2 ( s f ) − 1 2 S 3 ( s f ) − 1 3 S 4 ( s f ) − 1 4 S 5 ( s f ) − 1 5 S 6 ( s f ) − 1 6 S 7 ( s f ) − s f c θ f − 1 2 S 3 ( s f ) − 1 4 S 4 ( s f ) − 1 6 S 5 ( s f ) − 1 8 S 6 ( s f ) − 1 10 S 7 ( s f ) − 1 12 S 8 ( s f ) 1 2 s f 2 c θ f − 1 3 S 4 ( s f ) − 1 6 S 5 ( s f ) − 1 9 S 6 ( s f ) − 1 12 S 7 ( s f ) − 1 15 S 8 ( s f ) − 1 18 S 9 ( s f ) 1 3 s f 3 c θ f − 1 4 S 5 ( s f ) − 1 8 S 6 ( s f ) − 1 12 S 7 ( s f ) − 1 16 S 8 ( s f ) − 1 20 S 9 ( s f ) − 1 24 S 10 ( s f ) 1 4 s f 4 c θ f − 1 5 S 6 ( s f ) − 1 10 S 7 ( s f ) − 1 15 S 8 ( s f ) − 1 20 S 9 ( s f ) − 1 25 S 10 ( s f ) − 1 30 S 11 ( s f ) 1 5 s f 5 c θ f − 1 6 S 7 ( s f ) − 1 12 S 8 ( s f ) − 1 18 S 9 ( s f ) − 1 24 S 10 ( s f ) − 1 30 S 11 ( s f ) − 1 36 S 12 ( s f ) 1 6 s f 6 c θ f s f c θ f 1 2 s f 2 c θ f 1 3 s f 3 c θ f 1 4 s f 4 c θ f 1 5 s f 5 c θ f 1 6 s f 6 c θ f κ f c θ f ] + λ 2 [ 0 0 0 0 0 0 1 0 0 0 0 0 0 s f 0 0 0 0 0 0 s f 2 0 0 0 0 0 0 s f 3 0 0 0 0 0 0 s f 4 0 0 0 0 0 0 s f 5 1 s f s f 2 s f 3 s f 4 s f 5 κ f ′ ] . \begin{align} \bf{H}_{7x7} &= \frac{\delta ^ 2 \bf{J}(\bf{q})}{\delta \bf{q}^2} + \frac{\delta ^ 2 (\bf{\lambda} ^ T \bf{g}(\bf{q}))}{\delta \bf{q}^2} \notag \\ &= \frac{\delta ^ 2 \bf{J}(\bf{q})}{\delta \bf{q}^2} + \lambda_0\frac{\delta ^ 2 x(s_f)}{\delta \bf{q}^2} + \lambda_1\frac{\delta ^ 2 y(s_f)}{\delta \bf{q}^2} + \lambda_2\frac{\delta ^ 2 \theta(s_f)}{\delta \bf{q}^2} \notag \\ &= \begin{bmatrix} s_f & \frac{s_f^2}{2} & \frac{s_f^3}{3} & \frac{s_f^4}{4} & \frac{s_f^5}{5} & \frac{s_f^6}{6} & \kappa_f \\ \frac{s_f^2}{2} & \frac{s_f^3}{3} & \frac{s_f^4}{4} & \frac{s_f^5}{5} & \frac{s_f^6}{6} & \frac{s_f^7}{7} & s_f\kappa_f \\ \frac{s_f^3}{3} & \frac{s_f^4}{4} & \frac{s_f^5}{5} & \frac{s_f^6}{6} & \frac{s_f^7}{7} & \frac{s_f^8}{8} & s_f^2\kappa_f \\ \frac{s_f^4}{4} & \frac{s_f^5}{5} & \frac{s_f^6}{6} & \frac{s_f^7}{7} & \frac{s_f^8}{8}& \frac{s_f^9}{9} & s_f^3\kappa_f \\ \frac{s_f^5}{5} & \frac{s_f^6}{6} & \frac{s_f^7}{7} & \frac{s_f^8}{8} & \frac{s_f^9}{9} & \frac{s_f^{10}}{10} & s_f^4\kappa_f \\ \frac{s_f^6}{6} & \frac{s_f^7}{7} & \frac{s_f^8}{8} & \frac{s_f^9}{9} & \frac{s_f^{10}}{10} & \frac{s_f^{11}}{11} & s_f^5\kappa_f \\ \kappa_f & s_f\kappa_f & s_f^2\kappa_f & s_f^3\kappa_f & s_f^4\kappa_f & s_f^5\kappa_f & k_f k_f' \end{bmatrix} \notag \\ &+ \lambda_0\begin{bmatrix} -C^2(s_f) & -\frac{1}{2}C^3(s_f) & -\frac{1}{3}C^4(s_f) & -\frac{1}{4}C^5(s_f) & -\frac{1}{5}C^6(s_f) & -\frac{1}{6}C^7(s_f) - & -s_fs\theta_f \\ -\frac{1}{2}C^3(s_f) & -\frac{1}{4}C^4(s_f) & -\frac{1}{6}C^5(s_f) & -\frac{1}{8}C^6(s_f) & -\frac{1}{10}C^7(s_f) & -\frac{1}{12}C^8(s_f) & -\frac{1}{2}s_f^2 s\theta_f \\ -\frac{1}{3}C^4(s_f) & -\frac{1}{6}C^5(s_f) & -\frac{1}{9}C^6(s_f) & -\frac{1}{12}C^7(s_f) & -\frac{1}{15}C^8(s_f) & -\frac{1}{18}C^9(s_f) & -\frac{1}{3}s_f^3 s\theta_f \\ -\frac{1}{4}C^5(s_f) & -\frac{1}{8}C^6(s_f) & -\frac{1}{12}C^7(s_f) & -\frac{1}{16}C^8(s_f) & -\frac{1}{20}C^9(s_f) & -\frac{1}{24}C^{10}(s_f) & -\frac{1}{4}s_f^4 s\theta_f \\ -\frac{1}{5}C^6(s_f) & -\frac{1}{10}C^7(s_f) & -\frac{1}{15}C^8(s_f) & -\frac{1}{20}C^9(s_f) & -\frac{1}{25}C^{10}(s_f) & -\frac{1}{30}C^{11}(s_f) & -\frac{1}{5}s_f^5 s\theta_f \\ -\frac{1}{6}C^7(s_f) & -\frac{1}{12}C^8(s_f) & -\frac{1}{18}C^9(s_f) & -\frac{1}{24}C^{10}(s_f) & -\frac{1}{30}C^{11}(s_f) & -\frac{1}{36}C^{12}(s_f) & -\frac{1}{6}s_f^6 s\theta_f \\ -s_fs\theta_f & -\frac{1}{2}s_f^2 s\theta_f & -\frac{1}{3}s_f^3 s\theta_f & -\frac{1}{4}s_f^4 s\theta_f & -\frac{1}{5}s_f^5 s\theta_f & -\frac{1}{6}s_f^6 s\theta_f & -\kappa_f s\theta_f \end{bmatrix} \notag \\ &+\lambda_1\begin{bmatrix} -S^2(s_f) & -\frac{1}{2}S^3(s_f) & -\frac{1}{3}S^4(s_f) & -\frac{1}{4}S^5(s_f) & -\frac{1}{5}S^6(s_f) & -\frac{1}{6}S^7(s_f) - & s_fc\theta_f \\ -\frac{1}{2}S^3(s_f) & -\frac{1}{4}S^4(s_f) & -\frac{1}{6}S^5(s_f) & -\frac{1}{8}S^6(s_f) & -\frac{1}{10}S^7(s_f) & -\frac{1}{12}S^8(s_f) & \frac{1}{2}s_f^2 c\theta_f \\ -\frac{1}{3}S^4(s_f) & -\frac{1}{6}S^5(s_f) & -\frac{1}{9}S^6(s_f) & -\frac{1}{12}S^7(s_f) & -\frac{1}{15}S^8(s_f) & -\frac{1}{18}S^9(s_f) & \frac{1}{3}s_f^3 c\theta_f \\ -\frac{1}{4}S^5(s_f) & -\frac{1}{8}S^6(s_f) & -\frac{1}{12}S^7(s_f) & -\frac{1}{16}S^8(s_f) & -\frac{1}{20}S^9(s_f) & -\frac{1}{24}S^{10}(s_f) & \frac{1}{4}s_f^4 c\theta_f \\ -\frac{1}{5}S^6(s_f) & -\frac{1}{10}S^7(s_f) & -\frac{1}{15}S^8(s_f) & -\frac{1}{20}S^9(s_f) & -\frac{1}{25}S^{10}(s_f) & -\frac{1}{30}S^{11}(s_f) & \frac{1}{5}s_f^5 c\theta_f \\ -\frac{1}{6}S^7(s_f) & -\frac{1}{12}S^8(s_f) & -\frac{1}{18}S^9(s_f) & -\frac{1}{24}S^{10}(s_f) & -\frac{1}{30}S^{11}(s_f) & -\frac{1}{36}S^{12}(s_f) & \frac{1}{6}s_f^6 c\theta_f \\ s_fc\theta_f & \frac{1}{2}s_f^2 c\theta_f & \frac{1}{3}s_f^3 c\theta_f & \frac{1}{4}s_f^4 c\theta_f & \frac{1}{5}s_f^5 c\theta_f & \frac{1}{6}s_f^6 c\theta_f & \kappa_f c\theta_f \end{bmatrix}\notag \\ &+\lambda_2\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & s_f \\ 0 & 0 & 0 & 0 & 0 & 0 & s_f^2 \\ 0 & 0 & 0 & 0 & 0 & 0 & s_f^3 \\ 0 & 0 & 0 & 0 & 0 & 0 & s_f^4 \\ 0 & 0 & 0 & 0 & 0 & 0 & s_f^5 \\ 1 & s_f & s_f^2 & s_f^3 & s_f^4 & s_f^5 & \kappa_f' \end{bmatrix}\notag \\ . \end{align} H7x7.=δq2δ2J(q)+δq2δ2(λTg(q))=δq2δ2J(q)+λ0δq2δ2x(sf)+λ1δq2δ2y(sf)+λ2δq2δ2θ(sf)= sf2sf23sf34sf45sf56sf6κf2sf23sf34sf45sf56sf67sf7sfκf3sf34sf45sf56sf67sf78sf8sf2κf4sf45sf56sf67sf78sf89sf9sf3κf5sf56sf67sf78sf89sf910sf10sf4κf6sf67sf78sf89sf910sf1011sf11sf5κfκfsfκfsf2κfsf3κfsf4κfsf5κfkfkf′ +λ0 −C2(sf)−21C3(sf)−31C4(sf)−41C5(sf)−51C6(sf)−61C7(sf)−sfsθf−21C3(sf)−41C4(sf)−61C5(sf)−81C6(sf)−101C7(sf)−121C8(sf)−21sf2sθf−31C4(sf)−61C5(sf)−91C6(sf)−121C7(sf)−151C8(sf)−181C9(sf)−31sf3sθf−41C5(sf)−81C6(sf)−121C7(sf)−161C8(sf)−201C9(sf)−241C10(sf)−41sf4sθf−51C6(sf)−101C7(sf)−151C8(sf)−201C9(sf)−251C10(sf)−301C11(sf)−51sf5sθf−61C7(sf)−−121C8(sf)−181C9(sf)−241C10(sf)−301C11(sf)−361C12(sf)−61sf6sθf−sfsθf−21sf2sθf−31sf3sθf−41sf4sθf−51sf5sθf−61sf6sθf−κfsθf +λ1 −S2(sf)−21S3(sf)−31S4(sf)−41S5(sf)−51S6(sf)−61S7(sf)sfcθf−21S3(sf)−41S4(sf)−61S5(sf)−81S6(sf)−101S7(sf)−121S8(sf)21sf2cθf−31S4(sf)−61S5(sf)−91S6(sf)−121S7(sf)−151S8(sf)−181S9(sf)31sf3cθf−41S5(sf)−81S6(sf)−121S7(sf)−161S8(sf)−201S9(sf)−241S10(sf)41sf4cθf−51S6(sf)−101S7(sf)−151S8(sf)−201S9(sf)−251S10(sf)−301S11(sf)51sf5cθf−61S7(sf)−−121S8(sf)−181S9(sf)−241S10(sf)−301S11(sf)−361S12(sf)61sf6cθfsfcθf21sf2cθf31sf3cθf41sf4cθf51sf5cθf61sf6cθfκfcθf +λ2 0000001000000sf000000sf2000000sf3000000sf4000000sf51sfsf2sf3sf4sf5κf′
H 3 x 7 = δ δ q g ( q ) = [ δ x ( s f ) δ q δ y ( s f ) δ q δ θ ( s f ) δ q ] = [ − S 1 ( s f ) − 1 2 S 2 ( s f ) − 1 3 S 3 ( s f ) − 1 4 S 4 ( s f ) − 1 5 S 5 ( s f ) − 1 6 S 6 ( s f ) c θ f C 1 ( s f ) 1 2 C 2 ( s f ) 1 3 C 3 ( s f ) 1 4 C 4 ( s f ) 1 5 C 5 ( s f ) 1 6 C 6 ( s f ) s θ f s f s f 2 2 s f 3 3 s f 4 4 s f 5 5 s f 6 6 κ f ] \begin{align} \bf{H}_{3x7} &= \frac{\delta}{\delta \bf{q}} \bf{g}(\bf{q}) \notag \\ &=\begin{bmatrix} \frac{\delta x(s_f)}{\delta \bf{q}} \\ \frac{\delta y(s_f)}{\delta \bf{q}} \\ \frac{\delta \theta(s_f)}{\delta \bf{q}} \end{bmatrix} \notag \\ &= \begin{bmatrix} -S^1(s_f) & -\frac{1}{2}S^2(s_f) & -\frac{1}{3}S^3(s_f) & -\frac{1}{4}S^4(s_f) & -\frac{1}{5}S^5(s_f) & -\frac{1}{6}S^6(s_f) & c\theta_f \\ C^1(s_f) & \frac{1}{2}C^2(s_f) & \frac{1}{3}C^3(s_f) & \frac{1}{4}C^4(s_f) & \frac{1}{5}C^5(s_f) & \frac{1}{6}C^6(s_f) & s\theta_f \\ s_f & \frac{s_f^2}{2} & \frac{s_f^3}{3} & \frac{s_f^4}{4} & \frac{s_f^5}{5} & \frac{s_f^6}{6} & \kappa_f \end{bmatrix} \notag \end{align} H3x7=δqδg(q)= δqδx(sf)δqδy(sf)δqδθ(sf) = −S1(sf)C1(sf)sf−21S2(sf)21C2(sf)2sf2−31S3(sf)31C3(sf)3sf3−41S4(sf)41C4(sf)4sf4−51S5(sf)51C5(sf)5sf5−61S6(sf)61C6(sf)6sf6cθfsθfκf
J T = [ ( δ δ q H ( q , λ ) ) T g ( q ) ] = [ ( δ J ( q ) δ q + δ λ T g ( q ) δ q ) T g ( q ) ] = [ K 0 ( s f ) K 1 ( s f ) K 2 ( s f ) K 3 ( s f ) K 4 ( s f ) K 5 ( s f ) 1 2 k f 2 x ( s f ) − x f y ( s f ) − y f θ ( s f ) − θ f ] + [ H 3 x 7 T λ 0 3 x 1 ] \begin{align} \bf{J}^T &= \begin{bmatrix} \bigg(\frac{\delta}{\delta \bf{q}}\bf{H}(\bf{q},\bf{\lambda})\bigg)^T \\ \bf{g}(\bf{q}) \end{bmatrix} \notag \\ &= \begin{bmatrix} \bigg( \frac{\delta \bf{J}(q)}{\delta\bf{q}} + \frac{\delta \bf{\lambda}^T\bf{g}(\bf{q})}{\delta \bf{q}} \bigg)^T \\ \bf{g}(\bf{q}) \end{bmatrix} \notag \\ &= \begin{bmatrix} K^0(s_f) \\ K^1(s_f) \\ K^2(s_f) \\ K^3(s_f) \\ K^4(s_f) \\ K^5(s_f) \\ \frac{1}{2}k_f^2 \\ x(s_f) - x_f \\ y(s_f) - y_f \\ \theta(s_f) - \theta_f \end{bmatrix} + \begin{bmatrix} \bf{H}_{3x7}^T\bf{\lambda} \\ \bf{0}_{3x1} \end{bmatrix} \end{align} JT= (δqδH(q,λ))Tg(q) = (δqδJ(q)+δqδλTg(q))Tg(q) = K0(sf)K1(sf)K2(sf)K3(sf)K4(sf)K5(sf)21kf2x(sf)−xfy(sf)−yfθ(sf)−θf +[H3x7Tλ03x1]
其中:
k
f
=
a
0
+
a
1
s
f
+
a
2
s
f
2
+
a
3
s
f
3
+
a
4
s
f
4
+
a
5
s
f
5
\begin{align} k_f = a_0 + a_1s_f + a_2s_f^2 + a_3s_f^3 + a_4s_f^4 + a_5s_f^5 \end{align}
kf=a0+a1sf+a2sf2+a3sf3+a4sf4+a5sf5
k
f
′
=
a
1
+
2
a
2
s
f
+
3
a
3
s
f
2
+
4
a
4
s
f
3
+
5
a
5
s
f
4
\begin{align} k_f' = a_1 + 2a_2s_f + 3a_3s_f^2 + 4a_4s_f^3 + 5a_5s_f^4 \end{align}
kf′=a1+2a2sf+3a3sf2+4a4sf3+5a5sf4
s
θ
f
=
s
i
n
(
θ
(
s
f
)
)
,
c
θ
f
=
c
o
s
(
θ
(
s
f
)
)
\begin{align} s\theta_f = sin(\theta(s_f)),c\theta_f = cos(\theta(s_f)) \end{align}
sθf=sin(θ(sf)),cθf=cos(θ(sf))
将
[
0
,
s
f
]
[0, s_f]
[0,sf]分成m等分,m为偶数,定义:
w
=
{
w
k
}
=
[
1
4
2
4
.
.
.
4
2
4
1
]
T
\begin{align} \bf{w} = \{w_k\} = \begin{bmatrix} 1 & 4 & 2 & 4 &...&4 & 2 & 4 & 1 \end{bmatrix}^T \end{align}
w={wk}=[1424...4241]T
C
n
(
s
f
)
=
(
Δ
s
3
)
∑
k
=
0
m
w
k
s
k
n
c
o
s
(
θ
(
s
k
)
)
w
i
t
h
s
k
=
k
Δ
s
\begin{align} C^n(s_f) = \bigg( \frac{\Delta s}{3}\bigg)\sum_{k=0}^m w_k s_k^n cos(\theta(s_k)) \quad with \quad s_k = k\Delta s \end{align}
Cn(sf)=(3Δs)k=0∑mwkskncos(θ(sk))withsk=kΔs
S
n
(
s
f
)
=
(
Δ
s
3
)
∑
k
=
0
m
w
k
s
k
n
s
i
n
(
θ
(
s
k
)
)
w
i
t
h
s
k
=
k
Δ
s
\begin{align} S^n(s_f) = \bigg( \frac{\Delta s}{3}\bigg)\sum_{k=0}^m w_k s_k^n sin(\theta(s_k)) \quad with \quad s_k = k\Delta s \end{align}
Sn(sf)=(3Δs)k=0∑mwksknsin(θ(sk))withsk=kΔs
x ( s f ) = ( Δ s 3 ) ∑ k = 0 m w k c o s ( θ ( s k ) ) w i t h s k = k Δ s \begin{align} x(s_f) &= \bigg(\frac{\Delta s}{3} \bigg) \sum_{k=0}^mw_k cos(\theta(s_k)) \quad with \quad s_k = k\Delta s \end{align} x(sf)=(3Δs)k=0∑mwkcos(θ(sk))withsk=kΔs
y ( s f ) = ( Δ s 3 ) ∑ k = 0 m w k s i n ( θ ( s k ) ) w i t h s k = k Δ s \begin{align} y(s_f) &= \bigg(\frac{\Delta s}{3} \bigg) \sum_{k=0}^mw_k sin(\theta(s_k)) \quad with \quad s_k = k\Delta s \end{align} y(sf)=(3Δs)k=0∑mwksin(θ(sk))withsk=kΔs
K n ( s ) = a 0 s n + 1 n + 1 + a 1 s n + 2 n + 2 + a 2 s n + 3 n + 3 + a 3 s n + 4 n + 4 + a 4 s n + 5 n + 5 + a 5 s n + 6 n + 6 \begin{align} \bf{K}^n(s) = a_0 \frac{s^{n+1}}{n+1} + a_1\frac{s^{n+2}}{n+2} + a_2\frac{s^{n+3}}{n+3} + a_3\frac{s^{n+4}}{n+4} + a_4\frac{s^{n+5}}{n+5} + a_5\frac{s^{n+6}}{n+6} \end{align} Kn(s)=a0n+1sn+1+a1n+2sn+2+a2n+3sn+3+a3n+4sn+4+a4n+5sn+5+a5n+6sn+6
待续…