【轨迹生成】参数化最优控制 约束-控制-图形参数

Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control

Alonzo Kelly
Bryan Nagy



1. 车辆的运动模型

  • 车辆运动描述
    在这里插入图片描述

  • 车辆状态
    在这里插入图片描述

  • 控制输入–决定速度和曲率变化
    在这里插入图片描述

  • 换元得到距离s的函数
    在这里插入图片描述

2. 轨迹最优化问题

给定起点、目标点的状态(包括位姿、曲率,也可以包括速度)等,找到一个合适的控制输入,产生相应的轨迹,且轨迹需要满足动态模型的约束、且不触碰障碍物。这样的控制输入可能不存在,也可能存在,甚至存在多个,那么需要从多个合乎要求的控制输入中找到最优控制。


3. 最优化控制公式

  • 非线性系统运动方程
    在这里插入图片描述
  • 评估函数,可以看出它与末状态及整条路径的情况有关,我们的最优化问题实际上是使J函数最小化
    在这里插入图片描述
  • 起点和目标点需要满足的约束
    在这里插入图片描述
  • 控制输入有界,其变化速度也有界,约束如下
    在这里插入图片描述

4. 问题转化–服从约束条件的最优解

  • 引入参数p,p为和轨迹形状相关的一系列参数,那么它自然将决定各时刻的控制输入,即
    在这里插入图片描述

  • 由于控制u将决定状态x,且二者共同决定 x ˙ \dot x x˙,那么此时 x ˙ \dot x x˙将由参数p决定
    在这里插入图片描述

  • 将起点与目标点(甚至可以使轨迹上的一系列指定要到达的点)称为边界状态,由初始状态加上 x ˙ \dot x x˙的积分得到,其值需要与我们的要求(表示为 x b , x_b, xb向量)相等
    在这里插入图片描述

  • 将上式变形如下,得到边界条件约束的标准形式
    在这里插入图片描述

  • 那么轨迹最优化可以公式化描述如下,即服从g=0约束条件下的J函数最小化问题(且参数p有界)
    在这里插入图片描述
    在这里插入图片描述

  • 换元,q是包含p和s的向量,进一步地,上述最优化公式可以写为
    在这里插入图片描述
    在这里插入图片描述


5. 拉格朗日乘数法求解–有约束条件的多元函数极值

  • 用J和约束g构造构造拉格朗日函数
    在这里插入图片描述

  • 极值条件需要满足H对q和λ的偏导数之和=0
    在这里插入图片描述
    在这里插入图片描述

  • 上式变形(f(x)=0=>f(x)+f’(x)△x=0)
    在这里插入图片描述
    在这里插入图片描述

  • 矩阵形式
    在这里插入图片描述

  • 实际上相当于令J对q的偏导数和g对q的偏导数分别=0,前者体现无约束条件的最优化,后者体现约束条件。


6. 例:螺旋曲线Clothoids 和多项式曲线Polynomial Spirals

  • 螺旋曲线
    可以发现,当产生螺旋曲线式的轨迹时,有两个参数a、b,当s=0即起始点处,曲率为a,随着s的增大,曲率以b的速度增加。然而这样的曲线参数太少,当给定了起点的曲率和目标点位置时,无法保证目标点处的曲率满足要求,甚至连朝向都不一定能满足。
    在这里插入图片描述
    在这里插入图片描述

  • 多项式曲线
    多项式曲线的参数更多,可以满足更多的边界条件
    在这里插入图片描述
    在这里插入图片描述

给出控制的形式后,很容易通过积分运算得到朝向、x、y随s的变化(这里默认起点位置0,0,朝向0)
在这里插入图片描述
在这里插入图片描述
假设我们总共需要满足的边界条件有8个:
在这里插入图片描述
而在通过积分构造,默认 x 0 、 y 0 、 Θ 0 = 0 x_0、y_0、Θ_0=0 x0y0Θ0=0,故前三个约束是自然满足的,还剩五个约束需要去满足,即 k 0 、 x f 、 y f 、 Θ f 、 k f k_0、x_f、y_f、Θ_f、k_f k0xfyfΘfkf

在这里插入图片描述
而恰好有五个参数
在这里插入图片描述
首先考虑 k 0 k_0 k0,将s=0带入k(s),即可得到,要满足 k 0 k_0 k0的约束只需

在这里插入图片描述
对于剩下四个边界条件:
在这里插入图片描述

7. 评价函数J的设计

1) 边界条件可以不作为约束,而体现在J中

对于轨迹上某个点的要求,体现在 ϕ \phi ϕ函数的设计上
在这里插入图片描述
在这里插入图片描述

2) 希望轨迹更平滑

对于整条轨迹的要求,体现在L函数上
在这里插入图片描述

  • 7
    点赞
  • 58
    收藏
    觉得还不错? 一键收藏
  • 11
    评论
最优状态估计是利用数学方法来估计系统状态的一种技术。卡尔曼滤波、H∞滤波以及非线性滤波是常见的最优状态估计方法。 卡尔曼滤波是一种最优递归滤波算法,可以通过利用系统模型和测量数据来估计系统的状态。卡尔曼滤波的基本原理是根据系统的状态方程和观测方程,通过预测和更新两个步骤来递归地更新状态估计。它可以有效地处理系统模型中的随机噪声和测量误差,并且对于线性系统和高斯噪声的情况下,能够达到最优估计。 H∞滤波是一种针对系统不确定性的最优滤波算法。相比于卡尔曼滤波,H∞滤波更加适用于非线性和非高斯系统模型,并且对于系统参数误差和测量误差具有较强的鲁棒性。H∞滤波的核心思想是设计一个最优的滤波器,使得滤波后的估计误差在一定的范围内最小化。 非线性滤波是一类用于估计非线性系统状态的滤波算法。与线性滤波不同,非线性滤波的系统模型和观测方程可以是非线性的。因此,为了实现最优状态估计,非线性滤波方法需要使用一些逼近或优化算法来逼近非线性函数或优化滤波器参数。常见的非线性滤波方法有扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)等。 总而言之,最优状态估计是通过数学方法来估计系统状态的技术。卡尔曼滤波、H∞滤波和非线性滤波是常用的最优状态估计方法,它们分别适用于不同类型的系统和噪声情况,并在实际应用中发挥着重要的作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值