傅里叶变换的初步介绍及其应用

前言

本人在看科研paper的过程中,经常涉及到一个之前没有学过的知识——傅里叶变换。为此我通过网课的形式初步自学了傅里叶变换,以下是我对傅里叶变换初步学习的总结和见解。

一、什么是变换

变换是数学里非常常见的一个概念。如图,在平面直角坐标系中,有三个向量,A、B以及A和B通过平行四边形法则合成的向量C。

 图1 向量的合成

通过变换,我们可以将平面直角坐标系图中的向量转换为的形式。比如,A(2,1),B(1,2),再将A和B的纵坐标和横坐标分别相加,可以得到C(3,3)。 

图2 向量的变换

在上图中,我们用了具体的数字来表示向量的长度,比如A的横坐标具有2个单位长度,纵坐标具有1个单位长度。而我们也可以将x轴的一个单位长度表示为 $\vec e_x$,y轴的一个单位长度为$\vec e_y$。从数学上来讲,$\vec e_x$$\vec e_y$分别内积的结果都为1,即$\vec e_x$·$\vec e_x$=$\vec e_y$·$\vec e_y$=1;而$\vec e_x$$\vec e_y$相互内积的结果为0,即$\vec e_x$·$\vec e_y$=0。如果我们在空间中找到一组向量(如$\vec e_x$$\vec e_y$),它们的自身长度为1,且内积为0,这种向量我们称之为标准正交基

图3 标准正交基的范例

我们也可以把平面内的任意向量表述为标准正交基的形式,比如A= 2$\vec e_x$+$\vec e_y$,B=2$\vec e_x$+$\vec e_y$,C= 3$\vec e_x$+3$\vec e_y$ 。

 二、傅里叶级数

傅里叶变换分为两种,一种是傅里叶级数,另一种是连续傅里叶变换。

傅里叶级数是法国数学家傅里叶在1807年时提出的,他认为,任何周期函数(如f(t)都可以用正弦函数余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),在后来,数学家也证明了这个观点的正确性。后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。

下面我们来举个例子,如图有一随机的周期性函数f(t),我们可以用三个振幅相同、频率不同的正弦函数来表示。此时,有

\mathbf{\mathbf{f(t)=sin(t)+sin(2t)+sin(3t)}}

下面是合成的演示图

图4 函数合成演示图

傅里叶级数也可以将一系列不同振幅、不同频率的函数合成为周期性函数\boldsymbol{\mathbf{f(t)}}。如图,有一随机的周期性函数f(t),我们可以把它看作由三个不同频率ω、不同振幅的正(余)弦函数合成的 。(不同的彩色线代表着不同频率的具有周期性的函数,黑色线代表着这些函数合成之后的具有周期性的函数)

图5 函数合成演示图

其中,

时域\boldsymbol{\mathbf{f(t)}}随着时间变化的图像

频域是\boldsymbol{\mathbf{f(t)}}随着频率变化的图像

时域图大家已经比较熟悉,为了更方便理解,我们将图5的图像经过傅里叶变换频域图表示出来。

图6 频域图

图5和图6相对应,频率为2ω的振幅最大,频率为ω的次之,频率为3ω的振幅最小。

于是我们就可以把这个波里面含有的各个不同的频率的分量的大小表示出来,这样我们就得到了频域图(傅立叶变换)。

但此时的频域图并没有表现出图5的一个特征——相位(phase),即每一个频率分量的起始点没有表示出来。如图5中,每一个频率分量的起始点不同,因此也具有不同的相位,因此我们要把频域图的另一个维度(相位)表示出来。

 图7 频域图

也就是说,我们把一个时域的信号进行傅里叶变换之后,会变换成3个内容:

1.一系列的频率ω

2.不同频率下对应的振幅F(f)

3.不同频率下对应的相位φ

此外,我们也可以通过频域图逆变换为时域图。

到这里,傅里叶级数的公式也就不难理解了,任意一个周期性函数都可以写成下式

                              \small f(t)=\frac{a_{0}}{2}+\sum a_{n}sin(n\omega t+\varphi _n) =\frac{a_{0}}{2}+\sum a_{n}sinn\omega t+\sum b_{n}cosn\omega t

其中,\frac{a_{0}}{2}常数\sum a_{n}sin(n\omega t+\varphi _n)\sum a_{n}sinn\omega t+\sum b_{n}cosn\omega t是一系列的三角函数n是一个整数,ω是函数的频率a_{n}是函数的振幅\varphi _n是函数的相位角

因此,我们可以得出这条式子的3个标准正交基1sinn\omega tcosn\omega t(自身内积为1,和组内其他标准正交基内积为0)。

但在傅里叶变换中,内积的定义是一种积分,比较复杂,在这里就不做过多的介绍了。

三、傅里叶变换

在第二章中,我们所学的傅里叶级数只能处理周期性函数,但大部分的信号都是非周期的函数,因此我们涉及到第三章的知识——(连续)傅里叶变换

为了说清楚傅里叶变换,我们可以用欧拉公式进行介绍。

假设有一个坐标系,横坐标为1,纵坐标为虚数 i ,对于任何一个点A,横坐标为cos\theta,纵坐标为isin\theta,因此A的坐标可以表示为A=cos\theta +isin\theta(其中cos\thetaisin\theta是一组标准正交基)。

图8 

根据欧拉公式,上述式子可以表示为

A=cos\theta +isin\theta=e^{i\theta }

\theta = \omega t得,A点会随着时间的增加,绕着图8的圆圈进行逆时针转动。

因此,上述式子也可以表示为

 A=cos\theta +isin\theta=e^{i\theta }=e^{i\omega t}

在A点随着时间逆时针旋转的过程中,A点每时每刻都代表着一种不同的标准正交基的组合。同样,式子也可以写成

 A=e^{-i\omega t}

这个式子表示让A点随着时间顺时针旋转,A点在不同时刻也代表着一种不同的正交基的组合。 

有了以上的知识支撑,我们就可以对一个函数进行傅里叶变换

如图,有一个横坐标为时间,纵坐标为信号的非周期性函数,随着时间最后会衰减为0。虽然这个信号并没有周期性,但我们可以把它看成一个周期性无穷大的周期性函数,因此可以从该函数分出一系列不同的周期性正(余)弦函数。

图9 

根据标准正交基的含义,假设该函数包含有频率为\omegasin函数信号,当使用同样为sin函数来进行内积,就会把该sin函数信号提取出来,而其他类型的信号(如cos函数信号)都会消失。

在傅里叶变换中,对内积的定义是一个积分形式,即傅里叶变换公式

 \hat{F_{T}}=\int_{-\propto}^{+\propto }f(t)e^{-j\omega t}dt

公式的结果分为两种情况:

\hat{F_{T}}=0

\hat{F_{T} }\neq 0

当信号f(t)不含有\omega的成分时,\hat{F_{T}}=0;当信号f(t)有一部分含有\omega的成分时,\hat{F_{T} }\neq 0。因为傅里叶变换的本质是内积,所以 f(t) 和  \large e^{-j\omega t}求内积的时候,只有 f (t) 中频率为 \large \omega 的分量才会有内积的结果,其余分量的内积为0。 因此,当 f(t) 中不含 \large \omega 的成分时,该公式的结果为0,当 f(t) 中含有 \large \omega ,则公式的计算结果不为0。

现在,对图9中的信号进行傅里叶变换,我们可以得到一个复数图,图中包含实部和虚部。

图10 

实部部分表示对应频率 \large \omega 下的频率分量大小,其中频率 \large \omega 是连续的

虚部部分表示不同频率下的相位

当然,也可以通过复数图来进行傅里叶变换的逆变换,得到原始信号

如下式

f(t)=\int_{-\infty }^{+\infty }F_{T}(\omega)e^{j\omega t}d\omega

到这里,我们就实现了把原始信号拆分为一系列正(余)弦信号(傅里叶变换),以及通过一系列正(余)弦信号得出原始信号(傅里叶变换的逆变换) 。

四、傅里叶变换的应用

1.声音的处理

在生活中,我们常常能接触到不同的声音,比如男声、女声和噪音等,为什么我们能快速地区分声音的类别呢?因为人的大脑可以进行快速的傅里叶变换,将接收到的信号变换为不同频率的一系列信号,其中低频的可能为男声,略高频的可能为女声,更高频率的可能为噪音。 然后,大脑会进行滤波,区分不同频率的声音并过滤掉杂音。

 2.图像的处理

图像的横坐标不一定为时间,也可以为空间位置。我们可以把图像进行傅里叶变换,分为低频的成分和高频的成分。如在人像中,低频的成分往往是人的轮廓,高频的成分往往是人的面部细节等,而美颜磨皮的功能正是通过滤掉部分高频的成分,来去除掉人的皱纹或斑点等。

后言

以上便是我对于初步学习傅里叶变换的总结和心得分享,接下来我希望在科研或者学专业课的过程中,可以通过写博客来总结知识点,在分享的同时也更有利于自己对知识的吸收消化,谢谢。

  • 36
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学不懂物理的工科生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值