TripoSR模型构建指南

一、介绍

TripoSR 是由 Tripo AI 和 Stability AI 合作开发的最先进的开源模型,用于从单个图像进行快速前馈 3D 重建。利用大型重建模型(LRM)的原理,TripoSR 带来了关键的进步,大大提高了 3D 重建的速度和质量。该模型的特点是能够快速处理输入,在 NVIDIA A100 GPU 上在不到 0.5 秒的时间内生成高质量的 3D 模型。

二、构建流程

1. 基础环境

  • 系统:Ubuntu系统,显卡:3090,显存:24G
  • 权重文件:config.yaml model.ckpt config.json u2net.onnx
  • 查看系统是否有Miniconda3的虚拟环境
    conda -V
    如果输入命令没有显示Conda版本号,则需要安装。

安装教程可查看*~~(gitee.com)https://e.gitee.com/gz_donkey/docs/2504450/file/5797611?sub_id=11485950&scope=root~~*

屏幕截图

2. 更新系统命令

输入下列命令将系统更新及系统缺失命令下载

apt-get update apt-get upgrade apt-get install -y vim wget unzip lsof net-tools openssh-server git git-lfs gcc cmake build-essential

3. 下载模型

输入下列命令对TripoSR模型进行下载

git clone https://gitclone.com/github.com/VAST-AI-Research/TripoSR.git

4. 创建虚拟Python环境

  • 创建一个名为"tsr"的虚拟镜像,python版本为3.10
conda create -n tsr python=3.10
  • 进入"tsr"虚拟环境
conda activate tsr

屏幕截图

5. 安装pytorch

  • 换国内源提升下载速度,出现“Writing to /root/.config/pip/pip.conf”则换源成功
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.douban.com

屏幕截图

  • 输入下列命令对pytorch进行安装
pip3 install torch torchvision torchaudio

屏幕截图

系统下载过程中,切勿有任何操作,直到出现“Successfully installed......”开头则表示安装结束并且成功。

屏幕截图

6. 下载模型依赖包

  • 使用Pip升级pip本身和setuptools
pip install --upgrade setuptools

微信截图_20240729110233.png

改为:“git+https://gitclone.com/github.com/tatsy/torchmcubes.git

git+https://gitclone.com/github.com/tatsy/torchmcubes.git
  • 进入模型文件并下载模型依赖包
cd TripoSR
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

系统下载过程中,切勿有任何操作,直到出现“Successfully installed......”开头则表示安装结束并且成功。

微信截图_20240729111327.png

7. 添加权重文件

  • 首先进入gradio_app.py文件中将最后几行代码删掉

微信截图_20240729114218.png

第一次运行项目时需要下载config.yaml和model.ckpt权重文件

export HF_ENDPOINT=https://hf-mirror.com

export GRADIO_SERVER_NAME=0.0.0.0

export GRADIO_SERVER_PORT=8080

python3 gradio_app.py

微信截图_20240729112202.png

此时已下载config.yaml权重文件,仍需要model.ckpt权重

其查看路径如下:/root/.cache/huggingface/hub/models--stabilityai--TripoSR/snapshots/2ba2f5591f8eb0821784764ab9ab99a12e1abb08/

屏幕截图

第二次运行项目时需要下载config.json权重文件

export HF_ENDPOINT=https://hf-mirror.com

export GRADIO_SERVER_NAME=0.0.0.0

export GRADIO_SERVER_PORT=8080

python3 gradio_app.py

屏幕截图

其查看路径如下:/root/.cache/huggingface/hub/models--facebook--dino-vitb16/snapshots/f205d5d8e640a89a2b8ef0369670dfc37cc07fc2/

屏幕截图

第三次运行项目时需要下载u2net.onnx权重文件

export HF_ENDPOINT=https://hf-mirror.com

export GRADIO_SERVER_NAME=0.0.0.0

export GRADIO_SERVER_PORT=8080

python3 gradio_app.py

屏幕截图

三、网页演示

使用下列命令运行项目呈现模型的成功界面

export GRADIO_SERVER_NAME=0.0.0.0 export GRADIO_SERVER_PORT=8080 python3 gradio_app.py

屏幕截图

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值