Stata软件network组命令在网状Meta分析中的应用

本文介绍了如何使用Stata的network组命令进行网状Meta分析,以治疗帕金森病药物为例,包括数据预处理、模型拟合、疗效排序和不一致性检验等步骤,并展示了具体的应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

Stata软件的mvmeta命令通过拟合多变量模型进行网状Meta分析,但仍存在诸多挑战,如数据预处理、 模型参数化、结果图示化等,而 network 组命令可以较好地应对这些挑战。本文以连续型数据为例,介绍如何使用 network 组命令进行网状 Meta 分析。

网状 Meta 分析(network meta-analyses,NMA) 可以同时进行直接与间接比较,即使是相比较的两种治疗药物从未进行过直接对比,该分析方法可以将一系列不同治疗方法的随机临床试验数据汇总, 然后就给定的治疗终点进行点及可信区间估计,同时对不相关性进行评估。

此篇文章用到的数据来源于治疗进展性帕金森病药物的 Meta 分析。Dias S, Welton NJ, Sutton AJ, et al. Nice Dsu Technical Support Document 2: a Generalised Linear Modelling Framework For Pairwise And Network Meta-Analysis Of Randomised Controlled Trials [EB

### 关于网状Meta分析Stata实现 网状Meta分析(NMA)作为一种先进的统计方法,在医学研究领域得到广泛应用。该方法能够同时比较两种以上的干预措施,不仅限于直接对比实验中的干预效果,还可以通过间接证据链推断不同疗法之间的相对疗效[^2]。 对于希望利用Stata执行网状Meta分析的研究者来说,可以采用`network meta`命令集来进行操作。下面提供一段简单的Stata代码示例用于说明如何构建一个基础版本的网状Meta分析模型: ```stata * 加载网络元分析所需的数据集 use "your_dataset.dta", clear * 定义变量名:studyid studylabel trtctr ctrname tratrt treatname se logrr * 其中trtctr表示治疗编码, ctrname为对照名称; tratrt代表试验编码,treatname则是对应的药物名字; * se指标准误,logrr是对数风险比. * 执行固定效应模型下的网状Meta分析 network setup studyid trtctr /// , studysize(study_size) effectsize(logrr) stderr(se) * 查看网络结构图 network graph * 进行一致性检验 inconsistency test * 报告各处理间的效果估计值及其95%置信区间 nma pairwiselogor, random * 绘制森林图展示结果 forestplot nma_pairwise_logor_random /// , sortby(treatment) nooverall nostats boxopts(msymbol(circle)) lineopts(lpattern(dash)) ``` 上述脚本展示了从准备数据到完成主要分析过程的一系列指令。需要注意的是实际应用时应根据具体项目调整参数设置以及输入合适的数据文件路径[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值