数值计算之 梯度向量和梯度矩阵,雅可比矩阵,海森矩阵

数值计算之 梯度向量,雅可比矩阵,海森矩阵

前言

非线性最小二乘中的函数求导内容,主要涉及梯度向量、雅可比矩阵和海森矩阵。因此提前做一个辨析。实际上之前在矩阵求导中已经提到过这些内容。

梯度向量

对于实值向量函数 f ( x ) ∈ R , x = ( x 1 , x 2 , … , x n ) T f(x)\in R,x=(x_1,x_2,\dots,x_n)^T f(x)R,x=(x1,x2,,xn)T,其梯度向量可表示为:
∇ f ( x ) = ∂ f ( x ) ∂ x = [ ∂ f ∂ x 1 ∂ f ∂ x 2 … ∂ f ∂ x n ] \nabla f(x)=\frac {\partial f(x)}{\partial x}= \begin{bmatrix} \frac {\partial f}{\partial x_1} \\ \frac {\partial f}{\partial x_2} \\ \dots \\ \frac {\partial f}{\partial x_n} \\ \end{bmatrix} f(x)=xf(x)=x1fx2fxnf
梯度向量的布局与分母的布局相同,也就是分母布局。

梯度矩阵

对于实值矩阵函数 f ( X ) ∈ R f(X)\in R f(X)R,其梯度矩阵 ∇ f ( X ) \nabla f(X) f(X)可表示为:
∇ f ( X ) = ∂ f T ( X ) ∂ X = [ ∂ f ∂ x 11 ∂ f ∂ x 12 … ∂ f ∂ x 1 n ∂ f ∂ x 21 ∂ f ∂ x 22 … ∂ f ∂ x 2 n … … … … ∂ f ∂ x n 1 ∂ f ∂ x n 2 … ∂ f ∂ x n n ] \nabla f(X)=\frac {\partial f^T(X)}{\partial X}= \begin{bmatrix} \frac {\partial f}{\partial x_{11}} & \frac {\partial f}{\partial x_{12}} & \dots & \frac {\partial f}{\partial x_{1n}} \\ \frac {\partial f}{\partial x_{21}} & \frac {\partial f}{\partial x_{22}} & \dots & \frac {\partial f}{\partial x_{2n}} \\ \dots & \dots & \dots & \dots\\ \frac {\partial f}{\partial x_{n1}} & \frac {\partial f}{\partial x_{n2}} & \dots & \frac {\partial f}{\partial x_{nn}} \\ \end{bmatrix} f(X)=XfT(X)=x11fx21fxn1fx12fx22fxn2fx1nfx2nfxnnf
对于实值向量函数 f i ( x ) ∈ R , x = ( x 1 , x 2 , … , x n ) T f_i(x)\in R,x=(x_1,x_2,\dots,x_n)^T fi(x)R,x=(x1,x2,,xn)T组成的向量 ( f 1 ( x ) , f 2 ( x ) , … , f n ( x ) ) T (f_1(x),f_2(x),\dots,f_n(x))^T (f1(x),f2(x),,fn(x))T,其梯度矩阵可表示为:
∇ f ( x ) = ∂ f T ( x ) ∂ x = [ ∂ f 1 ∂ x 1 ∂ f 2 ∂ x 1 … ∂ f n ∂ x 1 ∂ f 1 ∂ x 2 ∂ f 2 ∂ x 2 … ∂ f n ∂ x 2 … … … … ∂ f 1 ∂ x n ∂ f 2 ∂ x n … ∂ f n ∂ x n ] \nabla f(x)=\frac {\partial f^T(x)}{\partial x} =\begin{bmatrix} \frac {\partial f_1}{\partial x_{1}} & \frac {\partial f_2}{\partial x_{1}} & \dots & \frac {\partial f_n}{\partial x_{1}} \\ \frac {\partial f_1}{\partial x_{2}} & \frac {\partial f_2}{\partial x_{2}} & \dots & \frac {\partial f_n}{\partial x_{2}} \\ \dots & \dots & \dots & \dots\\ \frac {\partial f_1}{\partial x_{n}} & \frac {\partial f_2}{\partial x_{n}} & \dots & \frac {\partial f_n}{\partial x_{n}} \\ \end{bmatrix} f(x)=xfT(x)=x1f1x2f1xnf1x1f2x2f2xnf2x1fnx2fnxnfn
梯度矩阵需要保持分母的布局不变,也就是分母布局。

雅可比矩阵

对于实值矩阵函数 f ( X ) ∈ R f(X)\in R f(X)R,其雅可比矩阵 J ( X ) J(X) J(X)可表示为:
J ( X ) = ∂ f ( X ) ∂ X T = [ ∂ f ∂ x 11 ∂ f ∂ x 21 … ∂ f ∂ x n 1 ∂ f ∂ x 12 ∂ f ∂ x 22 … ∂ f ∂ x n 2 … … … … ∂ f ∂ x 1 n ∂ f ∂ x 2 n … ∂ f ∂ x n n ] J(X)=\frac {\partial f(X)}{\partial X^T}= \begin{bmatrix} \frac {\partial f}{\partial x_{11}} & \frac {\partial f}{\partial x_{21}} & \dots & \frac {\partial f}{\partial x_{n1}} \\ \frac {\partial f}{\partial x_{12}} & \frac {\partial f}{\partial x_{22}} & \dots & \frac {\partial f}{\partial x_{n2}} \\ \dots & \dots & \dots & \dots\\ \frac {\partial f}{\partial x_{1n}} & \frac {\partial f}{\partial x_{2n}} & \dots & \frac {\partial f}{\partial x_{nn}} \\ \end{bmatrix} J(X)=XTf(X)=x11fx12fx1nfx21fx22fx2nfxn1fxn2fxnnf

对于由实值向量函数 f i ( x ) ∈ R , x = ( x 1 , x 2 , … , x n ) T f_i(x)\in R,x=(x_1,x_2,\dots,x_n)^T fi(x)R,x=(x1,x2,,xn)T组成的向量 ( f 1 ( x ) , f 2 ( x ) , … , f n ( x ) ) T (f_1(x),f_2(x),\dots,f_n(x))^T (f1(x),f2(x),,fn(x))T,其雅可比矩阵可表示为:
J ( x ) = ∂ f ( x ) ∂ x T = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 … ∂ f 1 ∂ x n ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 … ∂ f 2 ∂ x n … … … … ∂ f n ∂ x 1 ∂ f n ∂ x 2 … ∂ f n ∂ x n ] J(x)=\frac {\partial f(x)}{\partial x^T}=\begin{bmatrix} \frac {\partial f_1}{\partial x_1} & \frac {\partial f_1}{\partial x_2} & \dots & \frac {\partial f_1}{\partial x_n} \\ \frac {\partial f_2}{\partial x_1} & \frac {\partial f_2}{\partial x_2} & \dots & \frac {\partial f_2}{\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac {\partial f_n}{\partial x_1} & \frac {\partial f_n}{\partial x_2} & \dots & \frac {\partial f_n}{\partial x_n} \\ \end{bmatrix} J(x)=xTf(x)=x1f1x1f2x1fnx2f1x2f2x2fnxnf1xnf2xnfn
雅可比矩阵需要保持分子的布局不变,也就是分子布局。

海森矩阵

对于实值向量函数 f ( x ) ∈ R , x = ( x 1 , x 2 , … , x n ) T f(x)\in R,x=(x_1,x_2,\dots,x_n)^T f(x)R,x=(x1,x2,,xn)T,其海森矩阵 H ( x ) H(x) H(x)是函数的二阶导,实际上就是 f ( x ) f(x) f(x)的梯度向量对 x x x的雅可比矩阵:

H ( x ) = J ( ∇ f ( x ) ) = ∂ ∂ f ( x ) ∂ x ∂ x T = [ ∂ 2 f ∂ x 1 ∂ x 1 ∂ 2 f ∂ x 1 ∂ x 2 … ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 ∂ x 2 … ∂ 2 f ∂ x 2 ∂ x n … … … … ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 … ∂ 2 f ∂ x n ∂ x n ] H(x)=J(\nabla f(x))=\frac{\partial \frac {\partial f(x)}{\partial x}}{\partial x^T} = \begin{bmatrix} \frac {\partial^2f}{\partial x_1\partial x_1} & \frac {\partial^2f}{\partial x_1\partial x_2} & \dots& \frac {\partial^2f}{\partial x_1\partial x_n} \\ \frac {\partial^2f}{\partial x_2\partial x_1} & \frac {\partial^2f}{\partial x_2\partial x_2} & \dots& \frac {\partial^2f}{\partial x_2\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac {\partial^2f}{\partial x_n\partial x_1} & \frac {\partial^2f}{\partial x_n\partial x_2} & \dots& \frac {\partial^2f}{\partial x_n\partial x_n} \\ \end{bmatrix} H(x)=J(f(x))=xTxf(x)=x1x12fx2x12fxnx12fx1x22fx2x22fxnx22fx1xn2fx2xn2fxnxn2f

总结

梯度向量和梯度矩阵保持分母布局不变;

雅可比矩阵保持分子布局不变;

海森矩阵其实是实值向量函数的梯度向量对自变量求雅可比矩阵。

补充

海森矩阵是对称矩阵。因为当一阶偏导连续,并且二阶混合偏导连续,则二阶混合偏导与求导顺序无关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值