卡尔曼滤波分析

概述

在实际项目中,常常需要对数据进行滤波,这里分享卡尔曼滤波算法应用。

正文

卡尔曼滤波(KF)属于线性滤波器,使用均值和方差描述系统状态,将多个符合高斯分布的不确定信息源进行数据融合的一种最优状态估计算法。

使用前提:

  • 线性:系统状态方程为线性(比例性、齐次性)的系统,非线性则需要使用扩展卡尔曼滤波(EKF)。

  • KF和EKF最大的区别在于:EKF的 F k F_k Fk H k H_k Hk都是使用雅各比矩阵表示

  • 高斯分布:系统噪声服从高斯分布

    • 传感器噪声

    • ADC采样噪声

预测方程:

X ^ k = F k X ^ k − 1 + B k U ⃗ k \hat{X}_k=F_k\hat{X}_{k-1}+B_k\vec{U}_k X^k=FkX^k1+BkU k

P k = F k P k − 1 F k T + Q k P_k=F_kP_{k-1}F^T_k+Q_k Pk=FkPk1FkT+Qk

更新方程:

K ′ = P k H k T H k P k H k T + R k K'=\frac {P_kH^T_k}{H_kP_kH^T_k+R_k} K=HkPkHkT+RkPkHkT

X k ′ ^ = X ^ k + K ′ ( Z ⃗ k − H k X ^ k ) \hat{X_k'}=\hat{X}_k+K'(\vec{Z}_k-H_k\hat{X}_k) Xk^=X^k+K(Z kHkX^k)

P k ′ = P k − K ′ H k P k {P_k}'=P_k-K'H_kP_k Pk=PkKHkPk

  • X ^ k \hat{X}_k X^k k k k时刻系统最优的状态向量

  • F k F_k Fk为状态转移矩阵,表示用 k − 1 k-1 k1时刻的状态向量估算 k k k时刻的状态向量

  • B k B_k Bk为输入控制矩阵,代表着控制向量 U ⃗ k \vec{U}_k U k和状态向量 X ^ k \hat{X}_k X^k的关系

  • U ⃗ k \vec{U}_k U k代表着控制向量,如加速度、角加速度等

  • P k P_k Pk为状态向量的协方差矩阵,代表着状态向量每个元素之间的关系

  • Q k Q_k Qk为预测状态的高斯噪声协方差矩阵,它用来衡量模型的准确度,模型越准确其值越小

  • Z ⃗ k \vec{Z}_k Z k k k k时刻测量值的状态向量

  • H k H_k Hk为转换矩阵,它将状态向量 X ^ k \hat{X}_k X^k映射到测量值所在的向量空间 Z ⃗ k \vec{Z}_k Z k

  • R k R_k Rk为测量值的高斯噪声协方差矩阵,代表着传感器的测量误差

一阶卡尔曼滤波
(1)预测状态方程:

在一阶系统下, F k F_k Fk的值为1,无外部控制向量 U ⃗ k \vec{U}_k U k的作用。所以,代入公式 X ^ k = F k X ^ k − 1 + B k U ⃗ k \hat{X}_k=F_k\hat{X}_{k-1}+B_k\vec{U}_k X^k=FkX^k1+BkU k得出:

X ^ k = X ^ k − 1 \hat{X}_k=\hat{X}_{k-1} X^k=X^k1

(2)预测状态协方差方程:

在一阶系统下, F k F_k Fk的值为1,所以转置矩阵 F k T F^T_k FkT的值也为1。所以,代入公式 P k = F k P k − 1 F k T + Q k P_k=F_kP_{k-1}F^T_k+Q_k Pk=FkPk1FkT+Qk得出:

P k = P k − 1 + Q k P_k=P_{k-1}+Q_k Pk=Pk1+Qk

(3)卡尔曼增益方程:

在一阶系统下, H k H_k Hk的值为1。所以,代入公式 K ′ = P k H k T H k P k H k T + R k K'=\frac {P_kH^T_k}{H_kP_kH^T_k+R_k} K=HkPkHkT+RkPkHkT得出:

K ′ = P k P k + R k K'=\frac {P_k}{P_k+R_k} K=Pk+RkPk

(4)更新最优状态方程:

在一阶系统下, H k H_k Hk的值为1。所以,代入公式 X k ′ ^ = X ^ k + K ′ ( Z ⃗ k − H k X ^ k ) \hat{X_k'}=\hat{X}_k+K'(\vec{Z}_k-H_k\hat{X}_k) Xk^=X^k+K(Z kHkX^k)得出:

X k ′ ^ = X ^ k + K ′ ( Z ⃗ k − X ^ k ) \hat{X_k'}=\hat{X}_k+K'(\vec{Z}_k-\hat{X}_k) Xk^=X^k+K(Z kX^k)

(5)更新状态协方差方程:

在一阶系统下, H k H_k Hk的值为1。所以,代入公式 P k ′ = P k − K ′ H k P k {P_k}'=P_k-K'H_kP_k Pk=PkKHkPk得出:

P k ′ = P k − K ′ P k {P_k}'=P_k-K'P_k Pk=PkKPk

C代码实现
typedef struct{
    float last_P;    
    float Q;         
    float R;         

    float out;
    float now_P;
    float Kg;
}kalman_t;

kalman_t my_kalman;
float kalman_filter_init(void)
{
    my_kalman.last_P = 1.0;
    my_kalman.Q = 0;
    my_kalman.R = 0.01;

    my_kalman.out = 0;
    my_kalman.now_P = 0;
    my_kalman.Kg = 0;
}

float kalman_filter_calc(kalman_t *kfp, float input)
{
    kfp->now_P = kfp->last_P + kfp->Q;
    kfp->Kg = kfp->now_P / (kfp->now_P + kfp->R);
    kfp->out += kfp->Kg * (input - kfp->out);
    kfp->last_P = (1 - kfp->Kg) * kfp->now_P;

    return kfp->out;
}
实验效果

在这里插入图片描述

二阶卡尔曼滤波

以经典卡尔曼滤波模型:加速度计、陀螺仪进行角度数据融合为例。

(1)预测状态方程:

首先,根据系统建立系统方程:

a n g l e k = a n g l e k − 1 − Q _ b i a s k − 1 ∗ Δ t + G y r o k ∗ Δ t + 1 2 ∗ ( G y r o k − G y r o k − 1 ) ∗ Δ t 2 angle_k = angle_{k-1} - Q\_bias_{k-1}*\Delta{t}+Gyro_k*\Delta{t}+\frac{1}{2}*(Gyro_k-Gyro_{k-1})*{\Delta _{t}}^{2} anglek=anglek1Q_biask1Δt+GyrokΔt+21(GyrokGyrok1)Δt2

Q _ b i a s k = Q _ b i a s k − 1 Q\_bias_{k} = Q\_bias_{k-1} Q_biask=Q_biask1

用矩阵的方式表示为:

∣ a n g l e k Q _ b i a s k ∣ = ∣ 1 − Δ t 0 1 ∣ ∣ a n g l e k − 1 Q _ b i a s k − 1 ∣ + ∣ Δ t 0 ∣ G y r o k + ∣ 1 2 ∗ Δ t 2 0 ∣ ( G y r o k − G y r o k − 1 ) \begin{vmatrix}angle_k\\Q\_bias_k\end{vmatrix}=\begin{vmatrix}1&-\Delta{t}\\0&1\end{vmatrix}\begin{vmatrix}angle_{k-1}\\Q\_bias_{k-1}\end{vmatrix}+\begin{vmatrix}\Delta{t}\\0\end{vmatrix}Gyro_k+\begin{vmatrix}\frac{1}{2}*{\Delta _{t}}^{2}\\0\end{vmatrix}(Gyro_k-Gyro_{k-1}) anglekQ_biask = 10Δt1 anglek1Q_biask1 + Δt0 Gyrok+ 21Δt20 (GyrokGyrok1)

  • a n g l e angle angle为角度,如pitch、roll、yaw

  • Q _ b i a s Q\_bias Q_bias为陀螺仪零漂,固定值

  • 由于 Δ t 2 {\Delta_{t}}^{2} Δt2非常小,所以忽略不计,所以 B k B_k Bk为0

  • F k = ∣ 1 − Δ t 0 1 ∣ F_k=\begin{vmatrix}1&-\Delta{t}\\0&1\end{vmatrix} Fk= 10Δt1

所以,预测状态方程的C代码如下:

angle += (gyro - Q_bias) * dt;//预测角度等于上次最优角度加上
                                  //角速度减去零漂后的积分角度
(2)预测状态协方差方程:

由于高斯分布中的每个数据点的协方差可以用 C o v ( x ) = Σ Cov(x)=\Sigma Cov(x)=Σ表示,所以高斯噪声协方差矩阵 Q k = ∣ C o v ( a n g l e , a n g l e ) C o v ( Q _ b i a s , a n g l e ) C o v ( a n g l e , Q _ b i a s ) C o v ( Q _ b i a s , Q _ b i a s ) ∣ Q_k=\begin{vmatrix}Cov(angle,angle)&Cov(Q\_bias,angle)\\Cov(angle,Q\_bias)&Cov(Q\_bias,Q\_bias)\end{vmatrix} Qk= Cov(angle,angle)Cov(angle,Q_bias)Cov(Q_bias,angle)Cov(Q_bias,Q_bias)

因为加速度计和陀螺仪噪声相互独立,所以:

Q k = ∣ C o v ( a n g l e , a n g l e ) 0 0 C o v ( Q b i a s , Q b i a s ) ∣ Q_k=\begin{vmatrix}Cov(angle,angle)&0\\0&Cov(Q_bias,Q_bias)\end{vmatrix} Qk= Cov(angle,angle)00Cov(Qbias,Qbias)

假设预测状态协方差矩阵 P k = ∣ a k b k c k d k ∣ P_k=\begin{vmatrix}a_k&b_k\\c_k&d_k\end{vmatrix} Pk= akckbkdk

代入预测状态协方差方程得出:

P k = ∣ a k − 1 − ( c k − 1 + b k − 1 ) ∗ Δ t + Δ t 2 b k − 1 − d k − 1 ∗ Δ t c k − 1 − d k − 1 ∗ Δ t d k − 1 ∣ + ∣ C o v ( a n g l e , a n g l e ) 0 0 C o v ( Q _ b i a s , Q _ b i a s ) ∣ P_k=\begin{vmatrix}a_{k-1}-(c_{k-1}+b_{k-1})*\Delta{t}+{\Delta{t}}^2&b_{k-1}-d_{k-1}*\Delta{t}\\c_{k-1}-d_{k-1}*\Delta{t}&d_{k-1}\end{vmatrix}+\begin{vmatrix}Cov(angle,angle)&0\\0&Cov(Q\_bias,Q\_bias)\end{vmatrix} Pk= ak1(ck1+bk1)Δt+Δt2ck1dk1Δtbk1dk1Δtdk1 + Cov(angle,angle)00Cov(Q_bias,Q_bias)

  • 由于 Δ t 2 {\Delta_{t}}^{2} Δt2非常小,所以忽略不计

所以,预测状态协方差方程的C代码如下:

PP[0][0] = PP[0][0] + Q_angle - (PP[0][1] - PP[1][0])*dt;
PP[0][1] = PP[0][1] - PP[1][1]*dt;
PP[1][0] = PP[1][0] - PP[1][1]*dt;
PP[1][1] = PP[1][0] + Q_gyro;
(3)卡尔曼增益方程:

首先建立测量方程 Z k = H k X k + V k Z_k=H_kX_k+V_k Zk=HkXk+Vk

  • Z k Z_k Zk k k k时刻实际观测量

  • X k X_k Xk k k k时刻状态量

  • V k V_k Vk k k k时刻的噪声

由于传感器数据自带噪声,所以 V k = 0 V_k=0 Vk=0

所以测量方程可以用矩阵表示为:

Z k = ∣ 1 0 ∣ ∣ X k 0 ∣ Z_k=\begin{vmatrix}1&0\end{vmatrix}\begin{vmatrix}X_k\\0\end{vmatrix} Zk= 10 Xk0

所以转换矩阵 H k = ∣ 1 0 ∣ H_k=\begin{vmatrix}1&0\end{vmatrix} Hk= 10

代入卡尔曼增益方程得出:

K ′ = ∣ a b c d ∣ ∣ 1 0 ∣ ∣ 1 0 ∣ ∣ a b c d ∣ ∣ 1 0 ∣ + R _ a n g l e = a + c a + R _ a n g l e K'=\frac{\begin{vmatrix}a&b\\c&d\end{vmatrix}\begin{vmatrix}1\\0\end{vmatrix}}{\begin{vmatrix}1&0\end{vmatrix}\begin{vmatrix}a&b\\c&d\end{vmatrix}\begin{vmatrix}1\\0\end{vmatrix}+R\_angle}=\frac{a+c}{a+R\_angle} K=10 acbd 10 +R_angle acbd 10 =a+R_anglea+c

所以卡尔曼增益方程的C代码如下:

K_0 = PP[0][0] / (PP[0][0] + R_angle);    //angle增益
K_1 = PP[1][0] / (PP[0][0] + R_angle);    //Q_bias增益
(4)更新最优状态方程:

代入更新最优状态方程得出:

∣ a n g l e Q _ b i a s ∣ = ∣ a n g l e Q _ b i a s ∣ + ∣ K 0 K 1 ∣ ( a n g l e z − ∣ 1 0 ∣ ∣ a n g l e Q _ b i a s ∣ ) \begin{vmatrix}angle\\Q\_bias\end{vmatrix}=\begin{vmatrix}angle\\Q\_bias\end{vmatrix}+\begin{vmatrix}K_0\\K_1\end{vmatrix}(angle_z-\begin{vmatrix}1&0\end{vmatrix}\begin{vmatrix}angle\\Q\_bias\end{vmatrix}) angleQ_bias = angleQ_bias + K0K1 (anglez 10 angleQ_bias )

所以更新最优状态方程的C代码如下:

Q_bias += K_1 * (angle_now - angle);
angle += K_0 * (angle_now - angle);
(5)更新状态协方差方程

代入更新状态协方差方程得出:

∣ a k ′ b k ′ c k ′ d k ′ ∣ = ( ∣ 1 0 0 1 ∣ − ∣ K 0 K 1 ∣ ∣ 1 0 ∣ ) ∗ ∣ a k b k c k d k ∣ \begin{vmatrix}{a_k}'&{b_k}'\\{c_k}'&{d_k}'\end{vmatrix}=(\begin{vmatrix}1&0\\0&1\end{vmatrix}-\begin{vmatrix}K_0\\K_1\end{vmatrix}\begin{vmatrix}1&0\end{vmatrix})*\begin{vmatrix}a_k&b_k\\c_k&d_k\end{vmatrix} akckbkdk =( 1001 K0K1 10 ) akckbkdk

所以更新状态协方差的C代码如下:

PP[0][0] = PP[0][0] - K_0 * PP[0][0];
PP[0][1] = PP[0][1] - K_0 * PP[0][1];
PP[1][0] = PP[1][0] - K_1 * PP[0][0];
PP[1][1] = PP[1][1] - K_1 * PP[0][1];
整理完整代码
static float Q_angle = 0.001;		//角度噪声的协方差
static float Q_gyro  = 0.003;		//角速度噪声的协方差  
static float R_angle = 0.5;		    //加速度计测量噪声的协方差
static float dt      = 0.01;		//采样周期即计算任务周期10ms

float kalman_acc_gyro(float angle_now, float gyro)
{
    static float Q_bias;
    static float K_0,K_1;   
    static float PP[2][2] = {{1, 0}, {0, 1}};
    static float angle;

    angle += (gyro - Q_bias) * dt;      
    PP[0][0] += Q_angle - (PP[0][1] - PP[1][0])*dt;
    PP[0][1] -= PP[1][1]*dt;
    PP[1][0] -= PP[1][1]*dt;
    PP[1][1] += Q_gyro;
    K_0 = PP[0][0] / (PP[0][0] + R_angle);    
    K_1 = PP[1][0] / (PP[0][0] + R_angle);
    Q_bias += K_1 * (angle_now - angle);
    angle += K_0 * (angle_now - angle);
    PP[0][0] -= K_0 * PP[0][0];
    PP[0][1] -= K_0 * PP[0][1];
    PP[1][0] -= K_1 * PP[0][0];
    PP[1][1] -= K_1 * PP[0][1];

    return angle;
}


void test(float acc_x, float acc_y, float acc_z,
     float gyro_x, float gyro_y, float gyro_z)
{
    float roll = (atan(acc_x/acc_z))*180/3.14159;
    kalman_acc_gyro(roll, gyro_y);
}
实验效果

在这里插入图片描述

总结

这样就完成了卡尔曼滤波的简单分析和基础应用,实际项目中不同系统的传递函数不同,所以需要进行调整设计,但是5大核心公式都不会变。扩展卡尔曼其实也是利用线性去模拟非线性,具体的应用大家有兴趣可以自行查文献实验,这里不做分析介绍。水平有限,这里只做自己的理解分析,有错误的地方,请大佬们不吝赐教!

RTKLIB是一个用于实时运动定位和导航的开源软件库。在RTKLIB中,卡尔曼滤波是用于处理GNSS(全球导航卫星系统)定位的关键技术之一。 卡尔曼滤波是一种递归的状态估计方法,它能够根据系统的动力学模型和测量数据,对系统的状态进行估计。在GNSS定位中,系统的状态通常包括位置、速度和钟差等参数。 RTKLIB中的卡尔曼滤波主要用于处理GNSS观测数据,并估计接收机的位置和钟差等参数。其具体细节如下: 1. 系统模型:卡尔曼滤波使用一个动力学模型来描述系统的运动规律。在GNSS定位中,通常使用直线模型或者匀速模型来描述接收机的运动。 2. 测量模型:卡尔曼滤波使用一个测量模型将观测数据与系统状态联系起来。在GNSS定位中,观测数据包括接收机接收到的卫星信号强度、多普勒频移等信息。 3. 预测步骤:在预测步骤中,卡尔曼滤波利用系统模型和上一时刻的状态估计,预测当前时刻的状态。 4. 更新步骤:在更新步骤中,卡尔曼滤波利用观测数据和预测的状态,通过计算卡尔曼增益来更新状态估计。 5. 递归过程:卡尔曼滤波是一个递归的过程,每次接收到新的观测数据时,都会进行一次预测和更新步骤,以不断更新状态估计。 在RTKLIB中,卡尔曼滤波的细节包括滤波器的初始化、观测数据的处理、状态估计的更新等。通过对观测数据进行滤波处理,可以提高GNSS定位的精度和可靠性。同时,RTKLIB还提供了一些参数和选项,可以根据具体需求进行配置和优化。 需要注意的是,卡尔曼滤波是一种线性系统估计方法,在GNSS定位中,由于存在非线性误差和噪声等因素,通常需要结合其他技术(如差分定位、整数模糊度解算等)来提高定位精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值