无穷长棱柱的温度分布 | 分离变量法(六)| 偏微分方程(十八)

截面为矩形的无穷长棱柱,内部无热源。两相对侧面与外界绝热,另两相对侧面温度分别保持为 0 o 0^o 0o和与高度无关的稳恒分布,求此棱柱的温度分布。

:可以看成二维问题。设矩形为 0 ≤ x ≤ a , 0 ≤ y ≤ b 0\leq x\leq a,0\leq y\leq b 0xa,0yb,温度分布为 u ( x , y ) u(x,y) u(x,y)则有边值问题
{ ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0 , 0 < x < a , 0 < y < b u ∣ x = 0 = 0 , u ∣ x = a = f ( y ) ∂ u ∂ y ∣ y = 0 = 0 , ∂ u ∂ y ∣ y = b = 0 (13) \begin{cases} \frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}=0,\quad 0<x<a,0<y<b \\ u|_{x=0}=0,\quad u|_{x=a}=f(y) \\ \frac{\partial u}{\partial y}|_{y=0}=0,\quad \frac{\partial u}{\partial y}|_{y=b}=0 \tag{13} \end{cases} x22u+y22u=0,0<x<a,0<y<bux=0=0,ux=a=f(y)yuy=0=0,yuy=b=0(13)
u ( x , y ) = X ( x ) Y ( y ) u(x,y)=X(x)Y(y) u(x,y)=X(x)Y(y),代入方程和齐次边界条件,分离得固有值问题
{ Y ′ ′ ( y ) + λ Y ( y ) = 0 Y ′ ( 0 ) = Y ′ ( b ) = 0 (14) \begin{cases} Y''(y)+\lambda Y(y)=0 \\ Y'(0)=Y'(b)=0 \tag{14} \end{cases} {Y(y)+λY(y)=0Y(0)=Y(b)=0(14)
和关于 X ( x ) X(x) X(x)的常微分方程
X ′ ′ ( x ) − λ X ( x ) = 0 X''(x)-\lambda X(x)=0 X(x)λX(x)=0
对比S-L型方程(9),固有值问题(14)式中 q ( y ) ≡ 0 q(y)\equiv 0 q(y)0,且两端不出现第I、III类边界条件。由S-L定理,固有值 λ = ω 2 ≥ 0 \lambda=\omega^2 \geq 0 λ=ω20,具体可解得固有值
λ n = ( n π b ) 2 , n = 0 , 1 , 2 , ⋯   , \lambda_n=(\frac{n\pi}{b})^2,\quad n=0,1,2,\cdots, λn=(bnπ)2,n=0,1,2,,
固有函数
Y n ( y ) = c o s n π b y Y_n(y)=cos\frac{n\pi}{b}y Yn(y)=cosbnπy
和相应的
X 0 ( x ) = C 0 + D 0 ( x ) X n ( x ) = C n c h n π b x + D n s h n π b x , n = 1 , 2 , ⋯ X_0(x)=C_0+D_0(x) \\ X_n(x)=C_nch\frac{n\pi}{b}x+D_nsh\frac{n\pi}{b}x,\quad n=1,2,\cdots X0(x)=C0+D0(x)Xn(x)=Cnchbnπx+Dnshbnπx,n=1,2,
将所有变量分离形状解叠加,令
u ( t , x ) = C 0 + D 0 x + ∑ n = 1 + ∞ ( C n c h n π b x + D n s h n π b x ) c o s n π b y u(t,x)=C_0+D_0x+\sum_{n=1}^{+\infty}(C_nch\frac{n\pi}{b}x+D_nsh\frac{n\pi}{b}x)cos\frac{n\pi}{b}y u(t,x)=C0+D0x+n=1+(Cnchbnπx+Dnshbnπx)cosbnπy
由(14)式中另一组非齐次边界条件
u ∣ x = 0 = C 0 + ∑ n = 1 + ∞ C n c o s n π b y = 0 u|_{x=0}=C_0+\sum_{n=1}^{+\infty}C_ncos\frac{n\pi}{b}y=0 ux=0=C0+n=1+Cncosbnπy=0
可推出 C n = 0 , n = 0 , 1 , 2 , ⋯ C_n=0,n=0,1,2,\cdots Cn=0,n=0,1,2,;
u ∣ x = a = D 0 a + ∑ n = 1 + ∞ D n s h a n π b c o s n π b y = f ( y ) u|_{x=a}=D_0a+\sum_{n=1}^{+\infty}D_nsh\frac{an\pi}{b}cos\frac{n\pi}{b}y=f(y) ux=a=D0a+n=1+Dnshbanπcosbnπy=f(y)
这是 f ( y ) f(y) f(y) [ 0 , b ] [0,b] [0,b]上的Fourier余弦展开,由(11)式可得
D 0 = 1 a b ∫ 0 b f ( y ) d y D n = 2 b s h a n π b ∫ 0 b f ( y ) c o s n π b y d y , n = 1 , 2 , ⋅ ⋅ ⋅ D_0=\frac{1}{ab}\int_0^bf(y)dy \\ D_n=\frac{2}{bsh\frac{an\pi}{b}}\int_0^bf(y)cos\frac{n\pi}{b}ydy,\quad n=1,2,··· D0=ab10bf(y)dyDn=bshbanπ20bf(y)cosbnπydy,n=1,2,
最后得矩形域上边值问题(13)式的形式解
u ( x , y ) = x a b ∫ 0 b f ( η ) d η + ∑ n = 1 + ∞ 2 b ( s h a n π b ) − 1 ∫ 0 b f ( η ) c o s n π b η d η s h n π b x c o s n π b y u(x,y)=\frac{x}{ab}\int_0^bf(\eta)d\eta+\sum_{n=1}^{+\infty}\frac{2}{b}(sh\frac{an\pi}{b})^{-1}\int_0^bf(\eta)cos\frac{n\pi}{b}\eta d\eta sh\frac{n\pi}{b}xcos\frac{n\pi}{b}y u(x,y)=abx0bf(η)dη+n=1+b2(shbanπ)10bf(η)cosbnπηdηshbnπxcosbnπy

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值