Aitken(埃特金)逐次插值法 | 一次插值、二次插值、k次插值

本文详细介绍了Aitken逐次插值法,这是一种通过逐步增加插值节点来提高插值精度的方法。文章解释了如何使用线性插值、二次插值等方法,并展示了如何通过Aitken插值表进行k次插值,适用于需要精确插值结果的场景。

Aitken(埃特金)逐次插值法

判断离散数据(xi,yi)(i=0,1,2,⋯ ,n)(x_i,y_i)(i=0,1,2,\cdots,n)(xi,yi)(i=0,1,2,,n)的插值精度,既可以采用事后误差估计的方法,也可以在插值点x的附近选取部分数据进行插值,然后再增加一些插值节点进行插值。若两次的插值结果之差小于规定的误差,则可认为插值精度复合要求而停止。这种在插值计算精度不够时增加节点(插值多项式的次数一般不宜超过6~8次)以提高插值精度方法就是所谓的逐次插值法。

在上述情况中,运用Lagrange插值方法存在一个明显缺点,就是当插值节点发生变化和增加时,Lagrange插值公式中的所有基函数都得重新计算,即计算量大。由于插值节点发生变化和增加只是个别节点,因此只对发生变化和增加的结点进行计算以减小计算量十分重要。

Aitken逐次插值法就是一种可以灵活地增加插值节点数,在前面计算结果的基础上继续进行计算而不必重新开始计算的方法。可见,Aitken逐次插值法具有承袭性的特点。

先约定表示插值结果的符号,设在插值区间[a,b][a,b][a,b]上,有n+1个顺序排列的插值节点x0,⋯ ,xk,⋯ ,xnx_0,\cdots,x_k,\cdots,x_nx0,,xk,,xn,插值点为x。由前k个顺序排列的插值节点x0,x1,⋯ ,xk−1x_0,x_1,\cdots,x_{k-1}x0,x1,,xk1构成的插值函数是x的k-1次多项式,可以用f(x0,⋯ ,xk−1;xk−1)f(x_0,\cdots,x_{k-1};x_{k-1})f(x0,,xk1;xk1)表示,简记为fk−1(xk−1)f_{k-1}(x_{k-1})fk1(xk1)。在上述k个插值节点x0,x1,⋯ ,xk−1x_0,x_1,\cdots,x_{k-1}x0,x1,,xk1的后面,再顺序增加一个新插值节点xi(i≥k)x_i(i\geq k)xi(ik),进行k次插值。其插值函数是x的k次多项式,用f(x0,⋯ ,xk−1;xk)f(x_0,\cdots,x_{k-1};x_k)f(x0,,xk1;xk)表示,简记为fk(xi)f_k(x_i)fk(xi),其中k表示插值次数,xkx_kxk为新增加的插值节点。在简记符号fk(xi)f_k(x_i)fk(xi)中,k个顺序排列插值节点x0,x1,⋯ ,xk−1x_0,x_1,\cdots,x_{k-1}x0,x1,,xk1中的最后一个节点xk−1x_{k-1}xk1,由fk(xi)f_k(x_i)fk(xi)下标k隐含地给出。

  1. 一次插值(线性插值)

首先给出一个固定插值节点x0x_0x0及其函数值f(x0)f(x_0)f(x0),再新增加一个节点xi(i≥1)x_i(i\geq 1)xi(i1)(自然同时也给出其函数值f(xi)f(x_i)f(xi)),用这两个插值节点进行线性插值,其结果为:
f1(xi)=x−xix0−xif(x0)+x−x0xi−x0f(xi)(i≥1) f_1(x_i)=\frac{x-x_i}{x_0-x_i}f(x_0)+\frac{x-x_0}{x_i-x_0}f(x_i) \quad (i\geq 1) f1(xi)=x0xixxif(x0)+xi

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值