1. Guass型求积公式
定义1:在区间
[
a
,
b
]
[a,b]
[a,b]内,如果由节点
x
0
,
x
1
,
⋯
,
x
n
x_0,x_1,\cdots,x_n
x0,x1,⋯,xn构造的插值型求积公式
∫
a
b
f
(
x
)
d
x
≅
∑
k
=
0
n
A
k
f
(
x
k
)
\int_a^b f(x)dx \cong \sum_{k=0}^nA_k f(x_k)
∫abf(x)dx≅k=0∑nAkf(xk)
具有2n+1次代数精度,则称该求积公式为Guass求积公式,求积节点
x
k
(
k
=
0
,
1
,
⋯
,
n
)
x_k(k=0,1,\cdots,n)
xk(k=0,1,⋯,n)为Guass点。
Guass型求积公式是各种数值积分公式中精度较高的一种,它与梯形公式和Simpson公式等一样,也是插值型的。所不同是,它所选择的n+1个节点 x 0 , x 1 , ⋯ , x n x_0,x_1,\cdots,x_n x0,x1,⋯,xn并非等距节点,也取消了 x 0 x_0 x0和 x n x_n xn与积分上下限a和b相重合的限制,其代数精度由此可提高到2n+1次。
构造Guass型求积公式,首先要确定出
A
k
A_k
Ak和
x
k
(
k
=
0
,
1
,
⋯
,
n
)
x_k(k=0,1,\cdots,n)
xk(k=0,1,⋯,n)两类系数,而求系数的关键点和难点在于求Guass点
x
k
x_k
xk,下面以构造区间
[
−
1
,
1
]
[-1,1]
[−1,1]上的两点Guass公式
∫
−
1
1
f
(
x
)
d
x
≅
A
0
f
(
x
0
)
+
A
1
f
(
x
1
)
\int_{-1}^{1}f(x)dx \cong A_0f(x_0)+A_1f(x_1)
∫−11f(x)dx≅A0f(x0)+A1f(x1)
为例,说明如何确定求积系数和求积节点。根据Guass求积公式
{
A
0
+
A
1
+
⋯
+
A
n
=
b
−
a
A
0
x
0
+
A
1
x
1
+
⋯
+
A
n
x
n
=
(
b
2
−
a
2
)
/
2
⋯
A
0
x
0
2
n
+
1
+
A
1
x
1
2
n
+
1
+
⋯
+
A
n
x
n
2
n
+
1
=
(
b
2
n
+
2
−
a
2
n
+
2
)
/
(
2
n
+
2
)
(1)
\begin{cases} A_0+A_1+\cdots+A_n=b-a \\ A_0x_0+A_1x_1+\cdots+A_nx_n=(b^2-a^2)/2 \\ \cdots \\ A_0x_0^{2n+1}+A_1x_1^{2n+1}+\cdots+A_nx_n^{2n+1}=(b^{2n+2}-a^{2n+2})/(2n+2) \end{cases} \tag{1}
⎩⎪⎪⎪⎨⎪⎪⎪⎧A0+A1+⋯+An=b−aA0x0+A1x1+⋯+Anxn=(b2−a2)/2⋯A0x02n+1+A1x12n+1+⋯+Anxn2n+1=(b2n+2−a2n+2)/(2n+2)(1)
其中
A
i
A_i
Ai和
x
i
(
i
=
0
,
1
,
2
,
⋯
,
n
)
x_i(i=0,1,2,\cdots, n)
xi(i=0,1,2,⋯,n)均为待定,则上式方程组具有(2n+2)个待定系数。
列出非线性方程组为:
A
0
+
A
1
=
b
−
a
=
1
−
(
−
1
)
=
2
A
0
x
0
+
A
1
x
1
=
b
2
−
a
2
2
=
0
A
0
x
0
2
+
A
1
x
1
2
=
b
3
−
a
3
3
=
2
3
A
0
x
0
3
+
A
1
x
1
3
=
b
4
−
a
4
4
=
0
A_0+A_1=b-a=1-(-1)=2 \\ A_0x_0+A_1x_1= \frac{b^2-a^2}{2}=0 \\ A_0x_0^2 + A_1x_1^2=\frac{b^3-a^3}{3} =\frac{2}{3} \\ A_0x_0^3 + A_1x_1^3=\frac{b^4-a^4}{4}=0
A0+A1=b−a=1−(−1)=2A0x0+A1x1=2b2−a2=0A0x02+A1x12=3b3−a3=32A0x03+A1x13=4b4−a4=0
解之,得:
A
0
=
A
1
=
1
;
x
0
=
−
1
3
和
x
1
=
1
3
A_0=A_1=1; \quad x_0=-\frac{1}{\sqrt{3}} 和 x_1=\frac{1}{\sqrt{3}}
A0=A1=1;x0=−31和x1=31
因此,两点Guass公式为:
∫
−
1
1
f
(
x
)
d
x
≅
f
(
−
1
3
)
+
f
(
1
3
)
\int_{-1}^1f(x)dx \cong f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})
∫−11f(x)dx≅f(−31)+f(31)
若能用某种简便方法先求出求积节点,非线性方程组(1)就变称线性方程组(2),此时求积系数
A
k
A_k
Ak就能够比较容易地求得
{
A
0
+
A
1
+
⋯
+
A
n
=
b
−
a
A
0
x
0
+
A
1
x
1
+
⋯
+
A
n
x
n
=
(
b
2
−
a
2
)
/
2
⋯
A
0
x
0
n
+
A
1
x
1
n
+
⋯
+
A
n
x
n
n
=
(
b
n
+
1
−
a
n
+
1
)
/
(
n
+
1
)
(2)
\begin{cases} A_0+A_1+\cdots+A_n=b-a \\ A_0x_0+A_1x_1+\cdots+A_nx_n=(b^2-a^2)/2 \\ \cdots \\ A_0x_0^n+A_1x_1^n+\cdots+A_nx_n^n=(b^{n+1}-a^{n+1})/(n+1) \end{cases} \tag{2}
⎩⎪⎪⎪⎨⎪⎪⎪⎧A0+A1+⋯+An=b−aA0x0+A1x1+⋯+Anxn=(b2−a2)/2⋯A0x0n+A1x1n+⋯+Anxnn=(bn+1−an+1)/(n+1)(2)
定理1:求积节点
x
k
(
k
=
0
,
1
,
2
,
⋯
,
n
)
x_k(k=0,1,2,\cdots,n)
xk(k=0,1,2,⋯,n)是Guass点的充要条件是,以这些点位零点的多项式
A
(
x
)
=
∏
k
=
0
n
(
x
−
x
k
)
A(x)=\prod_{k=0}^n(x-x_k)
A(x)=k=0∏n(x−xk)
与任意次数不超过n的多项式
p
(
x
)
p(x)
p(x)均正交,即:
∫
a
b
p
(
x
)
A
(
x
)
d
x
=
0
\int_a^bp(x)A(x)dx=0
∫abp(x)A(x)dx=0
2. Legendre多项式
Legendre多项式由下列表达式定义:
{
L
0
(
x
)
=
1
L
n
(
x
)
=
1
2
n
n
!
d
n
d
x
n
[
(
x
2
−
1
)
n
]
(
n
=
1
,
2
,
⋯
)
\begin{cases} L_0(x)=1 \\ L_n(x)=\frac{1}{2^nn!}\frac{d^n}{dx^n}[(x^2-1)^n] \quad (n=1,2,\cdots) \end{cases}
{L0(x)=1Ln(x)=2nn!1dxndn[(x2−1)n](n=1,2,⋯)
Legendre多项式的几个重要性质如下:
(1)在区间
[
−
1
,
1
]
[-1,1]
[−1,1]上,n次Legendre多项式
L
n
(
x
)
L_n(x)
Ln(x)与任意低于n次的多项式
p
(
x
)
p(x)
p(x)正交,即
∫
−
1
1
p
(
x
)
L
n
(
x
)
d
x
=
0
\int_{-1}^1p(x)L_n(x)dx=0
∫−11p(x)Ln(x)dx=0
(2)Legendre多项式所有的根在
[
−
1
,
1
]
[-1,1]
[−1,1]中,并且是不相同的实根。
(3)递推关系为:
L
n
(
x
)
=
2
n
−
1
n
x
L
n
−
1
(
x
)
−
n
−
1
n
L
n
−
2
(
x
)
n
≥
2
L_n(x)=\frac{2n-1}{n}xL_{n-1}(x)-\frac{n-1}{n}L_{n-2}(x) \quad n\geq 2
Ln(x)=n2n−1xLn−1(x)−nn−1Ln−2(x)n≥2
3. Guass-Legendre求积公式
根据Legendre多项式性质(1),可以去Legendre多项式的零点作为求积节点来构造Guass公式。这种求积方法就称为Guass-Legendre求积法。
例如,为了构造3点Guass公式
∫
−
1
1
f
(
x
)
d
x
≅
∑
k
=
1
3
A
k
f
(
x
k
)
\int_{-1}^1 f(x)dx \cong \sum_{k=1}^3A_kf(x_k)
∫−11f(x)dx≅k=1∑3Akf(xk)
可取3次Legendre多项式
L
3
(
x
)
L_3(x)
L3(x)的零点
x
1
=
−
3
/
5
,
x
2
=
0
,
x
3
=
3
/
5
x_1=-\sqrt{3/5}, \quad x_2=0, \quad x_3=\sqrt{3/5}
x1=−3/5,x2=0,x3=3/5
作为求积节点。令求积公式对于
f
(
x
)
=
1
,
x
,
x
2
f(x)=1,x,x^2
f(x)=1,x,x2都准确成立,则有:
{
A
1
+
A
2
+
A
3
=
∫
−
1
1
d
x
=
2
A
1
x
1
+
A
2
x
2
+
A
3
x
3
=
∫
−
1
1
x
d
x
=
0
A
1
x
1
2
+
A
2
x
2
2
+
A
3
x
3
2
=
∫
−
1
1
x
2
d
x
=
2
/
3
\begin{cases} A_1+A_2+A_3=\int_{-1}^1dx=2 \\ A_1x_1+A_2x_2+A_3x_3 = \int_{-1}^1 xdx=0 \\ A_1x_1^2+A_2x_2^2+A_3x_3^2 = \int_{-1}^{1}x^2dx=2/3 \end{cases}
⎩⎪⎨⎪⎧A1+A2+A3=∫−11dx=2A1x1+A2x2+A3x3=∫−11xdx=0A1x12+A2x22+A3x32=∫−11x2dx=2/3
解之,得3个求积加权系数
A
1
=
5
/
9
,
A
2
=
8
/
9
,
A
3
=
5
/
9
A_1=5/9,A_2=8/9,A_3=5/9
A1=5/9,A2=8/9,A3=5/9,最后得到3点Guass求积公式为:
∫
−
1
1
f
(
x
)
d
x
≅
5
9
f
(
−
3
5
)
+
8
9
f
(
0
)
+
5
9
f
(
3
5
)
\int_{-1}^1f(x)dx \cong \frac{5}{9}f(-\sqrt{\frac{3}{5}})+\frac{8}{9}f(0)+\frac{5}{9}f(\sqrt{\frac{3}{5}})
∫−11f(x)dx≅95f(−53)+98f(0)+95f(53)
如果区间
[
a
,
b
]
[a,b]
[a,b]是任意的,则需通过如下变换:
x
=
b
−
a
2
t
+
a
+
b
2
d
x
=
b
−
a
2
d
t
x=\frac{b-a}{2}t+\frac{a+b}{2} \quad dx=\frac{b-a}{2}dt
x=2b−at+2a+bdx=2b−adt
将在
[
a
,
b
]
[a,b]
[a,b]上的积分化为在区间
[
−
1
,
1
]
[-1,1]
[−1,1]上的积分,即:
∫
a
b
f
(
x
)
d
x
≅
b
−
a
2
∫
−
1
1
f
(
b
−
a
2
t
+
a
+
b
2
)
d
t
=
b
−
a
2
∫
−
1
1
φ
(
t
)
d
t
\int_a^bf(x)dx \cong \frac{b-a}{2}\int_{-1}^1 f(\frac{b-a}{2}t+\frac{a+b}{2})dt=\frac{b-a}{2}\int_{-1}^1 \varphi(t)dt
∫abf(x)dx≅2b−a∫−11f(2b−at+2a+b)dt=2b−a∫−11φ(t)dt
于是,在区间
[
a
,
b
]
[a,b]
[a,b]上的两点Guass-Legendre公式为:
∫
a
b
f
(
x
)
d
x
≅
b
−
a
2
[
f
(
−
b
−
a
2
3
+
a
+
b
2
)
+
f
(
b
−
a
2
3
+
b
+
a
2
)
]
\int_a^b f(x)dx \cong \frac{b-a}{2}[f(-\frac{b-a}{2\sqrt{3}}+\frac{a+b}{2})+f(\frac{b-a}{2\sqrt{3}}+\frac{b+a}{2})]
∫abf(x)dx≅2b−a[f(−23b−a+2a+b)+f(23b−a+2b+a)]