电商数据分析指标体系实例。

Arno Chan | 作者

人人都是产品经理 | 来源

爱数据原统计网 | 转自

http://www.woshipm.com/data-analysis/4153888.html


大家好,我是小z

之前分享了几篇关于指标体系的内容,有小伙伴表示没看够,那今天再来一篇电商相关的实例:

1

电商商业环境

在介绍指标体系前,先需要了解电商的商业环境,行业背景。下面简单从市场竞争及产业链维度,介绍电商平台所处的商业位置,以防挂一漏万。

1. 从市场竞争角度看

电商平台除了面临同类电商的直接竞争外,线下实体零售也是交易的业务,还有线上线下一体化的新零售业态模式。

2. 从产业链角度看

电商平台是连接B端商家和C端用户的交易平台,这里暂时忽略了物流、技术支持、交易等服务角色。

2

电商行业数据指标体系

1. 摘要

电商,本质上也是一种零售交易模式,只是借助互联网的东风将交易效率提升了。因此思考的数据指标体系沿用人、货、场这三个基本元素来思考的,每一部分也包含不同的维度内容。

特别说明的是核心指标(或者说北极星指标),由于当下也衍生了更垂直细分、更丰富的电商形态。每一种形态侧重的核心指标也会有所差异,同时企业在不同时期所侧重的核心指标也会有所不同,所以核心指标不能一概而论。

下面简单描述下各部分包括的内容,细分维度指标可以扫描文末二维码领取!

2. 核心指标

核心指标是指引公司发展的北极星指标,而且会因不同发展阶段、不同类型业态而有所差异。

例如:电商平台早期会重点关注接入商家与客户的比例,新增用户等指标;成长期开始关注平台DAU/UV,转化效率等;到成熟期才重点关注GMV。

而不同形态的电商也会有所侧重的:生鲜电商更关注生鲜品的损耗率、周转效率,内容电商或直播电商则更关注从内容/直播到用户交易的转化率。

3. 人

“人”这个要素不仅包括了平台交易双方的买家、卖家,还需要加入内部员工。

内部员工维度主要考察人效产出、销售完成率、是否被投诉率等方面内容;商家维度是平台交易的卖家,进驻商家的数量、质量也是直接影响客户消费体验的;客户维度是平台交易的买家,对于新客户、老客户、会员不同类型的客户重点关注的指标也会有所不同。

商家与客户的比例,则是平台冷启动时非常关注的指标之一。

4. 货

“货“这个要素狭义来说就是指商品,广义来说还应该包括商品流转过程的供应链,包含的维度有商品优势、在线品牌是否丰富等商品管理的维度。

5. 场

“场“主要包括:

  • 描述平台环境的市场环境

  • 整个平台运营流程:包括流量,购物车,下单,支付各环节及转化率

  • 营销活动:营销活动的目的是为了让用户想得起你,可以使用广告,活动等形式

  • 风险控制:一个健康的电商环境,一方面需要弱势的买方评价反馈,另一方面也需要留意交易双方对平台的监控评价

END -

本文为转载分享&推荐阅读,若侵权请联系后台删除

美团|商家数据指标体系搭建实例 

10大Python数据可视化库!

后台回复“入群”即可加入小z数据干货交流群
### 部署电商数据分析平台或工具 #### 准备工作 在本地环境中部署电商数据分析平台或工具前,需确保安装并配置好必要的开发环境和依赖项。这通常包括但不限于Java、Python等编程语言及其相关库;数据库管理系统如MySQL、PostgreSQL用于存储结构化数据;以及大数据处理框架如Hadoop、Spark等。 对于电商数据分析而言,数据收集是从不同渠道获取内外部数据的过程,这些数据源可以是电商平台内部系统、市场调查报告或是第三方提供的统计数据[^1]。因此,在准备阶段还需要考虑接入哪些具体的数据接口和服务API来满足业务需求。 #### 安装与配置Elasticsearch-Kibana集群 作为流行的时间序列数据可视化解决方案之一,ELK Stack(Elasticsearch, Logstash 和 Kibana)非常适合用来构建实时日志分析系统。这里将以该套件为例介绍其简易搭建方法: 1. 下载最新版本的Docker Desktop并启动; 2. 使用命令行创建名为`elk_stack`的新网络: ```bash docker network create elk_stack ``` 3. 启动单节点模式下的Elasticsearch实例: ```bash docker run -d --name es-node \ --net=elk_stack \ -p 9200:9200 \ -e "discovery.type=single-node" \ elasticsearch:7.10.0 ``` 4. 接着运行Logstash容器连接到上述创建好的ES节点上: ```bash docker run -d --name logstash \ --net=elk_stack \ -v $(pwd)/logstash.conf:/usr/share/logstash/pipeline/logstash.conf \ logstash:7.10.0 ``` 其中`$(pwd)/logstash.conf`指向自定义的日志解析配置文件路径。 5. 最后开启带有Web界面展示功能的Kibana服务端口映射至主机80端口供浏览器访问: ```bash docker run -d --name kibana \ --net=elk_stack \ -p 80:5601 \ kibana:7.10.0 ``` 此时应该可以在浏览器地址栏输入http://localhost/查看到默认首页了! #### 整合其他组件形成完整方案 除了以上提到的核心部分外,还可以根据实际应用场景加入更多辅助模块共同构成一套完善的电商数据分析体系。比如利用Prometheus监控指标变化趋势预警异常情况发生;借助Grafana制作精美报表分享给团队成员查阅等等。 通过合理规划各子系统的交互逻辑关系图,并遵循RESTful API设计原则实现跨域资源共享机制,则能够有效提升整个项目的可维护性和扩展性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值