机器学习入门(吃瓜第三章(1) 线性回归)

目录

机器学习三要素

一、一元线性回归

1. 基本形式

2. 最小二乘法

3. 极大似然估计法

4. E(w, b) 的性质

二、多元线性回归

1. 向量表示

2. 凸性证明

参考文献


机器学习三要素

  1. 模型:根据具体问题,确定假设空间。
  2. 策略:根据评价标准,确定选取最优模型的策略(通常会产生一个“损失函数”)。
  3. 算法:求解损失函数,确定最优模型。

一、一元线性回归

1. 基本形式

一元线性回归模型试图通过输入特征x的线性组合来预测输出y。其数学公式为:

向量形式为

其中, w 是权重, b 是偏置项。

2. 最小二乘法

最小二乘法是通过最小化损失函数来求解 w 和 b 的方法。对于线性回归问题,我们可以通过求导数并令其为零来找到最小化均方误差的 w 和 b 。我们对 w 和 b 分别求偏导数,并令它们等于零:
   

这将给出 wb的最优解。在实际操作中,我们可以利用矩阵运算加速求解。定义设计矩阵X和输出向量 y后,最优解可以表示为:

其中, \overline{x}\overline{y}分别是所有输入特征和输出标记的均值向量。

如果要用 Python 实现上式,可以使用 NumPy 库来进行矩阵运算。例如:

import numpy as np

# 假设 X 是输入矩阵,y 是输出向量
X = np.array([...])
y = np.array([...])

# 计算最优解
w = np.linalg.inv(X.T @ X) @ X.T @ y
b = np.mean(y) - w.T @ np.mean(X, axis=0)

3. 极大似然估计法

极大似然估计法的直观想法是:使观测样本出现概率最大的分布就是待求分布,即使得联合概率(似然函数)L(\theta) 取最大值的 \theta^* 即为 \theta的估计值。

通常对似然函数进行对数变换,用 ln L(\mu, \sigma^2)代替 L(\mu, \sigma^2)来求\mu\sigma 的估计值。

例:正态分布的参数估计

假设有一批观测样本x_1, x_2, \ldots, x_n ,其服从某个正态分布 X \sim N(\mu, \sigma^2),其中\mu\sigma为待估计的参数。用极大似然估计法来估计正态分布的参数\mu\sigma

(1) 写出随机变量X 的概率密度函数:

(2) 写出似然函数:

(3) 对数变换得到对数似然函数:

(4) 求解使得  \ln L(\mu, \sigma)最大的\mu\sigma

在线性回归中,假设误差ϵ服从均值为 0 的正态分布 ϵ∼N(0,σ2),则线性模型可以表示为y \sim N(wx + b, \sigma^2) 。然后使用极大似然估计来估计 wb的值。

求解参数 wb

(1) 写出似然函数:

(2) 对数变换得到对数似然函数:

(3) 对 wb求偏导数,并令其为零,求得最优解。

4. E(w, b) 的性质

(1) 证明 E(w, b)是半正定矩阵。

(2) 因此 E(w, b) 是关于 wb的凸函数。

(3) 凸函数的全局解的充分必要条件是其梯度等于零向量。

二、多元线性回归

1. 向量表示

多元线性回归模型可以表示为:

其中,x 是输入特征向量,w是权重向量,b是偏置项。

为了求解多元线性回归的参数,我们需要将损失函数写成矩阵形式,并证明其是凸函数。

损失函数的向量化

定义设计矩阵x和输出向量 y后,损失函数可以表示为:

2. 凸性证明

证明 E(\hat{w})\hat{w} 的凸函数。如果是凸函数,可以令其梯度等于零向量,从而求得全局最优解。

参考文献

[1] 【吃瓜教程】《机器学习公式详解》(南瓜书)与西瓜书公式推导
[2] 周志华.机器学习[M].清华大学出版社,2016.
[3] 谢文睿 秦州 贾彬彬.机器学习公式详解第2版[M].人民邮电出版社,2023.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值