[论文精读]Effective connectivity: Influence, causality and biophysical modeling

论文网址:Effective connectivity: Influence, causality and biophysical modeling - ScienceDirect

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 省流版

1.1. 心得

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Model specification

2.3.1. State-space models of effective connectivity

2.3.2. Nodes and random variables

2.3.3. The observation equation

2.3.4. The state equation

2.3.5. Specification of priors

2.3.6. Model comparison and Identifiability

2.3.7. Summary

2.4. Model inversions and inference

2.4.1. Discrete or continuous time?

2.4.2. Time, frequency or generalized coordinates?

2.4.3. Model inversion and inference

2.4.4. Summary

2.5. Statistical causal modeling

2.5.1. Philosophical background

2.5.2. Structural causal modeling: graphical models and Bayes–Nets

2.5.3. Summary

2.5.4. WAGS influence

2.5.5. More general models

2.5.6. Direct influence

2.5.7. Testing and measuring WAGS influence

2.5.8. Dynamic structural causal modeling

2.6. Challenges for causal modeling in Neuroimaging

2.6.1. Conclusion and suggestions for further work

3. 知识补充

3.1. Non-parametric model

3.2. Observation equation

4. Reference 


1. 省流版

1.1. 心得

(1)文章是偏综述,定位是“Comments and Controversies”,含有非常多的专业名称,新手极度不推荐

(2)有一点早了,可能和现在的研究有点不太能直接对接

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

        ①They record Causal Modeling, Granger Causal Modeling and other modeling methods

2.2. Introduction

        ①Causal modeling in Neuroimaging:

        ②Data driven and model driven methods:

        ③Causal relations: temporal (Granger-like influence, also WAGS influence) or physical influence (intervention and control)

eschew  vt.避免;(有意地)避开;回避    distal  adj.远端的;末梢的

dispel  vt.消除(尤指感觉或信仰);驱散

recapitulate  v.概括;重述;概述    epistemological  adj. 认识论的;认识论;知识论;论意义上的;知识论上的

precedence  n.优先;优先权

2.3. Model specification

2.3.1. State-space models of effective connectivity

        ①They reckon generative models help to analyze causality

2.3.2. Nodes and random variables

        ①Activity of neurons: x_{r}(t) or x(r,t)\colon r\in R, where R denotes the ROI

        ②Joint distribution of generative model: X=\{X_{\setminus i},X_{i}\}, where X_{\setminus i} denotes nodes without node i

membrane  n.(身体内的)膜;(植物的)细胞膜;(可起防水、防风等作用的)膜状物

depolarization  n.去极化;去极(化)(作用);退极(性);消(退)磁;消偏振(作用);去偏光

hemodynamic  adj.血液动力学的

2.3.3. The observation equation

        ①Sensor data at time t_{k}\mathrm{=}k\Delta and q \in Q predicted by x_{r}(t):

y_q(t_k)=g(x_r,t)+e(t_k)\colon r\in R_r,t\in[t_k,t_{k-1}]

        ②Observation equation in neuroimaging:

retarded  adj.弱智的;迟钝的;智力发育迟缓的  v.阻碍;减缓;使放慢速度

retard  vt.延缓;阻碍;减缓;使放慢速度  n.弱智;迟钝的人

smearing  v.诽谤;弄脏;诋毁;(用油性或稀软物质)胡乱涂抹;弄上油污  n.污点,拖尾效应;弄脏的;蹭脏(smear 进行时形式)

smear  v.弄脏;诽谤,诋毁;<美俚>贿赂;<美俚>打垮,击败;被擦模糊;把…制成涂片;把(字迹、图画等)蹭得模糊不清;(用油性或稀软物质)胡乱涂抹;弄上油污  n.(显微镜的)涂片;(尤指政治上的)抹黑,丑化;污迹;污点;污渍;黏稠物,涂抹物;(登山)不平衡的脚点  adj.
诽谤的,诋毁的

2.3.4. The state equation

        ①The evolution/updating of the neuronal states:

x_r(t)=f\bigl(x_{r'\in R_r}(\tau),u(\tau),\xi_{r'\in R_{r'}}(\tau)\bigr)\colon\tau\in\bigl(t,t-t_0\bigr]

where x_{r^{\prime}}(\tau)\colon r^{\prime}\in R_{r^{\prime}}\subseteq R denotes the feature of nodes, u(\tau) denotes the exogenous inputs, \xi_{r^{\prime}(\tau)} is the stochastic process

        ②State equations:

        ③GCM is used for modeling continuous space and discrete time (mainly based on stocastic linear iteration model), DCM models on discrete (ROI) space on continuous time (mainly used deterministic ordinary differential equations (ODE))

2.3.5. Specification of priors

        ①Formal priors and modeling:

        ②Sparse multivariate autoregression of concurrent EEG/fMRI recordings:

euphemism  n.委婉语;委婉说法

2.3.6. Model comparison and Identifiability

        ①Identify the identifiability of models

2.3.7. Summary

        ①Universal equation:

        ②文章分为数据驱动和模型驱动,而模型驱动是包含生物物理先验知识的,也可以算知识驱动

2.4. Model inversions and inference

2.4.1. Discrete or continuous time?

        ①Estimating continuous models by sampling discrete data when there are 3 time serieses:

\begin{pmatrix}\operatorname dX_1(t)\\\operatorname dX_2(t)\\\operatorname dX_3(t)\end{pmatrix}=A\begin{bmatrix}X_1(t)\\X_2(t)\\X_3(t)\end{bmatrix}\operatorname dt+\sum^{1/2}\operatorname dB(t)

and over the interval [t+\Delta t,t]:

\begin{gathered} \left.\left(\begin{array}{c}X_1(t+\Delta t)\\X_2(t+\Delta t)\\X_3(t+\Delta t)\end{array}\right.\right)=\exp(A\Delta t)\left(\begin{array}{c}X_1(t)\\X_2(t)\\X_3(t)\end{array}\right)+e(t+\Delta t) \\ e(t+\Delta t)=\int_{0}^{\Delta t}\exp(sA)\sum^{1/2}\operatorname{d}B(t-s) \\ \Sigma_{discrete}=\int_{0}^{\Delta t}\exp(sA)\sum\exp\left(sA^{T}\right)\operatorname{d}s \\ e(t+\Delta t)-\mathcal{N}(0,\Sigma_{discrete}) \end{gathered}

the noise is reflected in \Sigma_{discrete}.

        ②Models in non-linear systems:

\begin{aligned}\operatorname{d}X(t)&=f(X(t))\operatorname{d}t+\sum^{1/2}\operatorname{d}B(t)\\X(t)&=\begin{bmatrix}X_1(t)\\X_2(t)\\X_3(t)\end{bmatrix}\end{aligned}

X(t+\Delta t)=X(t)+A^{-1}\left(\exp(A\Delta t)-I\right)f(X(t))+e(t+\Delta t)

2.4.2. Time, frequency or generalized coordinates?

        ①They recommand the data domain conversion

2.4.3. Model inversion and inference

        ①To optimize model parameters, inversion strategy can be used to estimate

2.4.4. Summary

        ①They review the distinction between autoregression (AR) models and models formulated in continuous time (DCM)

2.5. Statistical causal modeling

2.5.1. Philosophical background

        ①Causal modeling is a legitimate statistical approach

2.5.2. Structural causal modeling: graphical models and Bayes–Nets

        ①Different dependence methods:

2.5.3. Summary

        ①There is a slight conflict between the directed causality of the brain and the undirected connections involving loops and feedback loops

2.5.4. WAGS influence

        ①Wiener–Akaike–Granger–Schweder (WAGS) Influences:

where the top figure denotes the weak influence and the bottom denotes strong influence

        ②Conditional Independence relations:

        ③Lack of independent definition of impact types:

2.5.5. More general models

        ①The Martingale component is an unpredictable part of a stochastic process

2.5.6. Direct influence

        ①False causal relationship:

2.5.7. Testing and measuring WAGS influence

        ①Inference for model means whether there is influence or not, and for parameter means the strength of the influence

        ②Interested parameters:

Inference for modelInference for parameter
DCMBayes factorthe conditional expectation of the parameter (effective connectivity)
GCMequivalent likelihood ratio (Granger causal F-statistics)conditional estimate of the corresponding autoregression coefficient

2.5.8. Dynamic structural causal modeling

        ①Listing some DCMs

        ②Direct and indirect influence of DCM:

2.6. Challenges for causal modeling in Neuroimaging

        ①There is virtually no lagged (or instantaneous) interaction observed among the Regions of Interest (ROIs), indicating a high degree of simultaneity in their activities.

        ②In fMRI analysis, the sole coefficients that withstand the rigorous False Discovery Rate (FDR) threshold are those that associate each ROI exclusively with its own past states, suggesting an intrinsic temporal continuity within individual regions.

        ③Functional Magnetic Resonance Imaging (fMRI) does not exert any discernible influence on the Electroencephalogram (EEG) recordings, indicating a lack of direct interference between these two neuroimaging modalities.

        ④Numerous intriguing interactions emerge among EEG sources, revealing complex dynamics and interdependencies within the underlying neural networks.

        ⑤While EEG sources provide valuable insights, they do not significantly impact the functional Magnetic Resonance Imaging (fMRI) process. Instead, fMRI and EEG offer complementary perspectives on brain activity, each with its unique strengths and limitations.

2.6.1. Conclusion and suggestions for further work

        Ensembling DCM and GCM is feasible

3. 知识补充

3.1. Non-parametric model

(1)参考学习:机器学习基础——参数模型和非参数模型_参数模型和非参数模型的区别-CSDN博客

3.2. Observation equation

在深度学习中,特别是在涉及状态空间模型(State Space Model, SSM)和深度强化学习(Deep Reinforcement Learning, DRL)的上下文中,观测方程(Observation Equation)是一个关键概念。以下是对观测方程的具体解释:

(1)观测方程的定义

观测方程描述了如何从系统的状态生成观测数据。在状态空间模型中,系统的状态是随时间变化的,而观测方程则定义了如何通过系统的当前状态以及可能的观测噪声来生成观测值。这些观测值通常是智能体(agent)在环境中能够直接感知到的信息。

(2)观测方程的形式

在数学上,观测方程通常可以表示为如下形式:

y_{t}= C_{t}x_{t}+D_{t}v_{t}

其中:

  • y_t 是在时刻 t 的观测向量。
  • x_t​ 是在时刻 t 的系统状态向量。
  • C_t 是观测矩阵,用于将系统状态映射到观测空间。
  • D_t 是观测噪声矩阵。
  • v_t 是观测噪声,通常假设为高斯噪声或其他类型的随机噪声。

4. Reference 

Valdes-Sosa, P. et al. (2011) 'Effective connectivity: Influence, causality and biophysical modeling', NeuroImage, 58(2): 339-361. doi: Redirecting

  • 23
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值