通过MATLAB实现基于A星算法的障碍物规避功能

721 篇文章 1103 订阅 ¥39.90 ¥99.00
本文介绍了如何使用MATLAB实现基于A*算法的障碍物规避功能。A*算法结合了Dijkstra算法和贪婪最佳优先搜索算法,提高了寻路效率。文中详细阐述了算法概述,并展示了MATLAB 2022a的仿真效果和源码。
摘要由CSDN通过智能技术生成

目录

1.算法概述

2.仿真效果

3.MATLAB仿真源码


1.算法概述

        A*算法吸取了Dijkstra 算法中的cost_so_far,为每个边长设置权值,不停的计算每个顶点到起始顶点的距离(G),以获得最短路线,
       同时也汲取贪婪最佳优先搜索算法中不断向目标前进优势,并持续计算每个顶点到目标顶点的距离(Heuristic distance),以引导搜索队列不断想目标逼近,从而搜索更少的顶点,保持寻路的高效。

        Hybrid A Star和普通的A Star的最大不同可见下图,在普通的A Star中,我们不会考虑运动物体的方向,而且也不考虑物体的运动实际,我们假定物体总能转移到邻近格点中。但在Hybrid A Star中我们需要考虑物体的方向,在下图中我们用带箭头的点来表示一个物体的位置。而且在普通的A Star中物体总是出现在网格的中心,但是由于Hybrid A Star中,我们考虑了物体的实际运动约束,所以它们并不一定出现在格点的中心。由一个特定的位置出发,物体在下一步搜索中只能到达它可能到达的位置,比如在汽车中,受制于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Simuworld

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值