Drainage Ditches POJ - 1273(网络流最大流模板题)

Drainage Ditches

题目链接:POJ - 1273
题意:给出有向图, 求由源点到汇点的最大流量;
网络流最大流的模板题;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
using namespace std;
const long long INF = 0x3f3f3f3f;
const int maxn=50010;
int N, M;
struct node{
	int v, nex, w;
}edge[500];
int head[300];
int cnt;
int G[300][300];
int flow[300];
queue<int> que;
int vis[300];
int pre[300];
int bfs(int u, int v){
	while(!que.empty()) que.pop();
	flow[u]=INF;
	memset(vis, 0, sizeof(vis));
	memset(pre, -1, sizeof(pre));
	que.push(u);
	vis[u]=1;
	while(!que.empty()){
		int temp=que.front();
		que.pop();
		if(temp==v){
			return flow[v];
		}
		for(int i=1; i<=M; i++){
			if(!vis[i]&&G[temp][i]>0){
				pre[i]=temp;
				flow[i]=min(flow[temp], G[temp][i]);
				vis[i]=1;
				que.push(i);
				
			}
		}
	}
	return -1;
}
void maxflow(){
	int minf=0;
	int sumflow=0;
	while(1){
		minf=bfs(1, M);
		if(minf==-1) break;
		for(int i=M; i!=-1; i=pre[i]){
			G[pre[i]][i]-=minf;
			G[i][pre[i]]+=minf;
		}
		sumflow+=minf;
	}
	printf("%d\n", sumflow);
}
int main(){
	while(~scanf("%d%d", &N, &M)){
		int u, v, w;
		memset(head, -1, sizeof(head));
		cnt=0;
		memset(G, 0, sizeof(G));
		for(int i=0; i<N; i++){
			scanf("%d%d%d", &u, &v, &w);
			G[u][v]+=w;
		}
		maxflow();
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值