【无人驾驶视觉系列之】3D障碍物检测(一)

本文探讨了无人驾驶视觉感知的异同,重点介绍了3D障碍物检测技术,特别是通过深度学习和几何约束来估计3D位置的方法。论文提出利用深度学习预测目标的长宽高和局部角度,然后通过几何对应关系反投影求解3D位置,从而提高3D位置估计的精度。
摘要由CSDN通过智能技术生成
无人驾驶视觉感知异同点介绍

  本篇为无人驾驶3D视觉检测第一篇,主要介绍目前工业界使用较多的技术方案。该技术方案主要来自于论文3D Bounding Box Estimation Using Deep Learning and Geometry.同时结合目前发展较为成熟的2D图像目标检测算法来为了3D视觉检测应用到无人驾驶场景中。如果说为什么不直接使用深度学习直接估计视觉3D目标的9Dof,主要原因在于由于相机成像成图像平面是透射变换,天然损失其中深度信息。如果直接从图像平面估计出3D世界中的位姿,效果不是很好。

  在介绍上面论文之前,我们先简单梳理一下坐标系。世界坐标系 ( x w , y w , z w ) (x_w,y_w,z_w) (xw,yw,zw)、相机坐标系 ( x c , y c , z c ) (x_c,y_c,z_c) (xc,yc,zc)、图像坐标系 ( u , v ) (u,v) (u,v),像平面坐标系 ( x , y ) (x,y) (x,y)

  1. 世界坐标系 ( x w , y w , z w ) (x_w,y_w,z_w) (xw,yw,zw)
  2. 相机坐标系 ( x c , y c , z c ) (x_c,y_c,z_c) (xc,yc,zc)
  3. 图像坐标系 ( u , v ) (u,v) (u,v)
  4. 像平面坐标系 ( x , y ) (x,y) (x,y)

相机内参矩阵K:
K = [ f x 0 c x 0 f y c y 0 0 1 ] K= \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} K=fx000fy0cxcy1

相机坐标系下沿着x轴旋转角度 α \alpha α,那么 R x R_x Rx

R x = [ 1 0 0 0 c o s α − s i n α 0 s i n α c o s α ] R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cos^{\alpha}& -sin^{\alpha} \\ 0 & sin^{\alpha} & cos^{\alpha} \end{bmatrix} Rx=1000cosαsinα0sinαcosα

相机坐标系下沿着y轴旋转角度 θ \theta θ,那么 R y R_y Ry

R y = [ c o s θ 0 − s i n θ 0 1 0 s i n θ 0 c o s θ ] R_y = \begin{bmatrix} cos^{θ} & 0 & -sin^{θ} \\ 0 & 1 & 0 \\ sin^{θ} & 0 & cos^{θ} \end{bmatrix} Ry=cosθ0sinθ010sinθ0cosθ

相机坐标系下沿着z轴旋转角度 β \beta β,那么 R z R_z Rz

R z = [ c o s β − s i n β 0 s i n β c o s β 0 0 0 1 ] R_z = \begin{bmatrix} cos^{\beta}& -sin^{\beta} & 0 \\ sin^{\beta}& cos^{\beta} & 0 \\ 0 & 0 & 1 \end{bmatrix} R

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值