矩阵2
伴随矩阵
定义:
A = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋯ ⋮ a n 1 a n 2 ⋯ a n n ∣ , A i j 为 a i j 的 代 数 余 子 式 , 使 用 A i j 作 为 元 素 排 成 一 个 新 的 矩 阵 A=\left| \begin{matrix} a_{11} \quad a_{12} \quad \cdots \quad a_{1n} \\ a_{21} \quad a_{22} \quad \cdots \quad a_{2n} \\ \vdots \quad \vdots \quad \cdots \quad \vdots \\ a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn} \end{matrix} \right|, A_{ij}为a_{ij}的代数余子式,使用A_{ij}作为元素排成一个新的矩阵 A=∣∣∣∣∣∣∣∣∣a11a12⋯a1na21a22⋯a2n⋮⋮⋯⋮an1an2⋯ann∣∣∣∣∣∣∣∣∣,Aij为aij的代数余子式,使用Aij作为元素排成一个新的矩阵
A ⋆ = ∣ A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋯ ⋮ A 1 n A 2 n ⋯ A n n ∣ , A ⋆ 就 是 A 的 伴 随 矩 阵 , 注 意 代 数 余 子 式 的 顺 序 A^{\star}=\left| \begin{matrix} A_{11} \quad A_{21} \quad \cdots \quad A_{n1} \\ A_{12} \quad A_{22} \quad \cdots \quad A_{n2} \\ \vdots \quad \vdots \quad \cdots \quad \vdots \\ A_{1n} \quad A_{2n} \quad \cdots \quad A_{nn} \end{matrix} \right| ,A^{\star}就是A的伴随矩阵, 注意代数余子式的顺序 A⋆=∣∣∣∣∣∣∣∣∣A11A21⋯An1A12A22⋯An2⋮⋮⋯⋮A1nA2n⋯Ann∣∣∣∣∣∣∣∣∣,A⋆就是A的伴随矩阵,注意代数余子式的顺序
练习: 求二阶矩阵 A = [ a b c d ] 的 伴 随 矩 阵 A=\left[ \begin{matrix} a \quad b \\ c \quad d \end{matrix} \right]的伴随矩阵 A=[abcd]的伴随矩阵
解: A 11 = d , A 12 = − c , A 21 = − b , A 22 = a A_{11}=d, A_{12}=-c, A_{21}=-b, A_{22}=a A11=d,A12=−c,A21=−b,A22=a
A ⋆ = [ d − b − c a ] A^{\star} = \left[ \begin{matrix} d \quad -b \\ -c \quad a \end{matrix} \right] A⋆=[d−b−ca]
也就是说二阶矩阵的伴随矩阵是主对角线交换位置, 斜对角线加负号.
练习: 求以下矩阵的伴随矩阵:
A = [ 1 0 − 1 1 ] , B = [ 1 − 2 3 1 ] , C = [ 2 − 3 1 4 ] A=\left[ \begin{matrix} 1 \quad 0 \\ -1 \quad 1 \end{matrix} \right], B=\left[ \begin{matrix} 1 \quad -2 \\ 3 \quad 1 \end{matrix} \right], C=\left[ \begin{matrix} 2 \quad -3 \\ 1 \quad 4 \end{matrix} \right] A=[10−11],B=[1−231],C=[2−314]
A A ⋆ = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋯ ⋮ a n 1 a n 2 ⋯ a n n ] [ A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋯ ⋮ A 1 n A 2 n ⋯ A n n ] AA^{\star} = \left[ \begin{matrix} a_{11} \quad a_{12} \quad \cdots \quad a_{1n} \\ a_{21} \quad a_{22} \quad \cdots \quad a_{2n} \\ \vdots \quad \vdots \quad \cdots \quad \vdots \\ a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn} \end{matrix} \right] \left[ \begin{matrix} A_{11} \quad A_{21} \quad \cdots \quad A_{n1} \\ A_{12} \quad A_{22} \quad \cdots \quad A_{n2} \\ \vdots \quad \vdots \quad \cdots \quad \vdots \\ A_{1n} \quad A_{2n} \quad \cdots \quad A_{nn} \end{matrix} \right] AA⋆=⎣⎢⎢⎢⎡a11a12⋯a1na21a22⋯a2n⋮⋮⋯⋮an1an2⋯ann⎦⎥⎥⎥⎤⎣⎢⎢⎢⎡A11A21⋯An1A12A22⋯An2⋮⋮⋯⋮A1nA2n⋯Ann⎦⎥⎥⎥⎤
= [ ∣ A ∣ ⋱ ∣ A ∣ ] =\left[ \begin{matrix} |A| \quad \quad \\ \quad \ddots \quad \\ \quad \quad |A| \end{matrix} \right] =⎣⎡∣A∣⋱∣A∣⎦⎤
= ∣ A ∣ E =|A|E =∣A∣E
倒过来相乘结果也是一样的
A ⋆ A = [ A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋯ ⋮ A 1 n A 2 n ⋯ A n n ] [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋯ ⋮ a n 1 a n 2 ⋯ a n n ] A^{\star}A = \left[ \begin{matrix} A_{11} \quad A_{21} \quad \cdots \quad A_{n1} \\ A_{12} \quad A_{22} \quad \cdots \quad A_{n2} \\ \vdots \quad \vdots \quad \cdots \quad \vdots \\ A_{1n} \quad A_{2n} \quad \cdots \quad A_{nn} \end{matrix} \right] \left[ \begin{matrix} a_{11} \quad a_{12} \quad \cdots \quad a_{1n} \\ a_{21} \quad a_{22} \quad \cdots \quad a_{2n} \\ \vdots \quad \vdots \quad \cdots \quad \vdots \\ a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn} \end{matrix} \right] A⋆A=⎣⎢⎢⎢⎡A11A21⋯An1A12A22⋯An2⋮⋮⋯⋮A1nA2n⋯Ann⎦⎥⎥⎥⎤⎣⎢⎢⎢⎡a11a12⋯a1na21a22⋯a2n⋮⋮⋯⋮an1an2⋯ann⎦⎥⎥⎥⎤
= [ ∣ A ∣ ⋱ ∣ A ∣ ] =\left[ \begin{matrix} |A| \quad \quad \\ \quad \ddots \quad \\ \quad \quad |A| \end{matrix} \right] =⎣⎡∣A∣⋱∣A∣⎦⎤
= ∣ A ∣ E =|A|E =∣A∣E
得到一个非常有用的公式: A A ⋆ = A ⋆ A = ∣ A ∣ E AA^{\star} = A^{\star}A=|A|E AA⋆=A⋆A=∣A∣E
矩阵的秩
首先出k阶子式的定义: 在 A m × n 的 矩 阵 中 任 取 k 行 k 列 , 位 于 这 些 行 列 相 交 处 的 k 2 个 元 素 , 按 原 次 序 组 成 的 k 阶 行 列 式 , 称 为 矩 阵 A 的 k 阶 子 式 . 在A_{m\times n}的矩阵中任取k行k列, 位于这些行列相交处的k^2个元素, 按原次序组成的k阶行列式,称为矩阵A的k阶子式. 在Am×n的矩阵中任取k行k列,位于这些行列相交处的k2个元素,按原次序组成的k阶行列式,称为矩阵A的k阶子式.
一般的:
m × n 矩 阵 A 的 k 阶 子 式 有 C m k C n k 个 . m \times n矩阵A的k阶子式有C^k_mC^k_n个. m×n矩阵A的k阶子式有CmkCnk个.
练习1: 找 出 A = [ 2 − 3 8 2 2 12 − 2 12 1 3 1 4 ] 有 多 少 个 3 阶 子 式 找出A= \left[ \begin{matrix} 2 \quad -3 \quad 8 \quad 2 \\ 2 \quad 12 \quad -2 \quad 12 \\ 1\quad 3\quad 1 \quad 4\end{matrix} \right]有多少个3阶子式 找出A=⎣⎡2−382212−2121314⎦⎤有多少个3阶子式
解: 根 据 k 阶 子 式 的 定 义 A 的 3 阶 子 式 有 C 3 3 C 4 3 = 4 个 根据k阶子式的定义A的3阶子式有C^3_3C^3_4=4个 根据k阶子式的定义A的3阶子式有C33C43=4个
秩的定义: 矩 阵 A 的 所 有 不 等 于 零 的 子 式 的 最 高 阶 数 称 为 矩 阵 A 的 秩 , 记 做 r ( A ) . 矩阵A的所有不等于零的子式的最高阶数称为矩阵A的秩,记做r(A). 矩阵A的所有不等于零的子式的最高阶数称为矩阵A的秩,记做r(A).
练习: 计 算 上 面 的 矩 阵 A 的 秩 计算上面的矩阵A的秩 计算上面的矩阵A的秩
显然: r ( O ) = 0 ; 只 要 A 不 是 零 矩 阵 , 就 有 r ( A ) > 0 , 并 且 : r(O)=0; 只要A不是零矩阵, 就有r(A)>0,并且: r(O)=0;只要A不是零矩阵,就有r(A)>0,并且:
1. r ( A m × n ) ≤ m i n { m , n } ; 1. r(A_{m \times n}) \leq min\{m,n\}; 1.r(Am×n)≤min{m,n};
2. 若 有 一 个 r 阶 子 式 不 为 零 , 则 r ( A ) ≥ r , 若 所 有 的 r 阶 子 式 全 为 零 , 则 r ( A ) < r . 2. 若有一个r阶子式不为零, 则r(A)\geq r,\\ 若所有的r阶子式全为零, 则r(A)\lt r. 2.若有一个r阶子式不为零,则r(A)≥r,若所有的r阶子式全为零,则r(A)<r.
3. r ( A T ) = r ( A ) 3. r(A^T) = r(A) 3.r(AT)=r(A)
4. 设 A n × n , 若 ∣ A ∣ ≠ 0 , 则 r ( A ) = n ; , 若 ∣ A ∣ = 0 , 则 r ( A ) < n 4. 设A_{n\times n}, 若|A|\neq 0, 则r(A)=n;, 若|A|=0, 则r(A)\lt n 4.设An×n,若∣A∣=0,则r(A)=n;,若∣A∣=0,则r(A)<n
练习2: 求矩阵A的秩:
A = [ a 11 a 12 ⋯ a 1 r ⋯ a 1 n a 22 ⋯ a 2 r ⋯ a 2 n ⋱ ⋮ ⋯ ⋮ a r r ⋯ a r n 0 ⋯ ⋯ ⋯ ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 ⋯ ⋯ ⋯ ⋯ 0 ] ( a 11 a 22 ⋯ a r r ≠ 0 ) A= \left[ \begin{matrix} a_{11} \quad a_{12} \quad \cdots \quad a_{1r} \cdots a_{1n} \\ \quad a_{22} \quad \cdots \quad a_{2r} \quad \cdots \quad a_{2n} \\ \quad \quad \ddots \quad \vdots \quad \cdots \quad \vdots \\\quad \quad \quad \quad \quad a_{rr} \quad \cdots \quad a_{rn} \\ 0 \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad 0 \\ \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\0 \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad 0 \end{matrix} \right]\\(a_{11}a_{22}\cdots a_{rr}\neq0) A=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡a11a12⋯a1r⋯a1na22⋯a2r⋯a2n⋱⋮⋯⋮arr⋯arn0⋯⋯⋯⋯0⋮⋮⋮⋮⋮⋮0⋯⋯⋯⋯0⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤(a11a22⋯arr=0)
显然 r ( A ) = r r(A)=r r(A)=r
定理: 矩阵经初等变换后, 其秩不变.
初等变换可能会改变 k k k阶子式的大小, 但是不会改变 k k k阶子式是否为0的状态.
结论: A 是 梯 形 阵 , 梯 形 阵 的 秩 是 梯 形 阵 中 非 零 行 的 函 数 . 可 以 通 过 初 等 变 换 讲 矩 阵 变 换 为 梯 形 阵 , 然 后 快 速 计 算 矩 阵 的 秩 . A是梯形阵, 梯形阵的秩是梯形阵中非零行的函数. 可以通过初等变换讲矩阵变换为梯形阵,然后快速计算矩阵的秩. A是梯形阵,梯形阵的秩是梯形阵中非零行的函数.可以通过初等变换讲矩阵变换为梯形阵,然后快速计算矩阵的秩.
练习3: 快速求练习1中矩阵A的秩.
练习4: 求矩阵 B = [ 1 2 3 4 1 0 1 2 3 − 1 − 1 0 1 2 0 − 5 ] 的 秩 B=\left[ \begin{matrix} 1 \quad 2 \quad 3 \quad 4 \\ 1 \quad 0 \quad 1 \quad 2 \\ 3\quad -1\quad -1 \quad 0 \\ 1 \quad 2 \quad 0 \quad -5\end{matrix} \right]的秩 B=⎣⎢⎢⎡123410123−1−10120−5⎦⎥⎥⎤的秩
练习5: C = [ 1 2 − 2 3 4 t 3 12 3 − 1 1 9 ] , t 为 何 值 是 , r ( C ) < 3 ? C= \left[ \begin{matrix} 1 \quad 2 \quad -2 \quad 3 \\ 4 \quad t \quad 3 \quad 12 \\ 3\quad -1\quad 1 \quad 9\end{matrix} \right], t为何值是, r(C)<3? C=⎣⎡12−234t3123−119⎦⎤,t为何值是,r(C)<3?
矩阵的秩是矩阵的一个重要的数字特征.
显然, 若两个矩阵有相同的秩, 则这两个矩阵有相同的标准形, 从而等价, 反之, 若两个矩阵等价, 则他们的秩相同.
定理: 矩 阵 A 与 B 等 价 的 充 分 必 要 条 件 是 r ( A ) = r ( B ) . 矩阵A与B等价的充分必要条件是r(A)=r(B). 矩阵A与B等价的充分必要条件是r(A)=r(B).
满秩矩阵
定义: 若方阵A的秩与其阶数相等, 则称A为满秩矩阵;否则称为降秩矩阵.
定理: 设A为满秩矩阵, 则A的标准形为同阶单位矩阵E, 即
A ≅ E A \cong E A≅E
定义: 若方阵A的行列式 ∣ A ∣ ≠ 0 , 则 称 A 为 非 奇 异 矩 阵 ; 若 ∣ A ∣ = 0 , 则 称 A 为 奇 异 矩 阵 . |A|\neq 0, 则称A为非奇异矩阵; 若|A|=0, 则称A为奇异矩阵. ∣A∣=0,则称A为非奇异矩阵;若∣A∣=0,则称A为奇异矩阵.
满秩的一定是非奇异的, 降秩的一定是奇异的.
逆矩阵
引入逆矩阵.
在 数 中 设 a ≠ 0 , 那 么 一 定 能 找 到 a − 1 , 使 a a − 1 = a − 1 a = 1 在数中设a\neq 0, 那么一定能找到a^{-1}, 使aa^{-1} = a^{-1}a=1 在数中设a=0,那么一定能找到a−1,使aa−1=a−1a=1
那 么 在 矩 阵 中 , 对 于 非 零 矩 阵 A ≠ O , 能 否 找 到 矩 阵 B , 使 那么在矩阵中, 对于非零矩阵A \neq O, 能否找到矩阵B,使 那么在矩阵中,对于非零矩阵A=O,能否找到矩阵B,使
A B = B A = E AB=BA=E AB=BA=E
例如: A = [ 1 0 0 0 ] , 假 如 有 B = [ a b c d ] 使 得 A B = B A = E A= \left[ \begin{matrix} 1 \quad 0 \\ 0 \quad 0 \end{matrix} \right], 假如有B=\left[ \begin{matrix} a \quad b \\ c \quad d \end{matrix} \right] 使得AB=BA=E A=[1000],假如有B=[abcd]使得AB=BA=E
$\left[ \begin{matrix} 1 \quad 0 \ 0 \quad 0 \end{matrix} \right]\left[ \begin{matrix} a \quad b \ c \quad d \end{matrix} \right]= \left[ \begin{matrix} a \quad b \ 0 \quad 0 \end{matrix} \right]= \left[ \begin{matrix} 1 \quad 0 \ 0 \quad 1 \end{matrix} \right] $
⇒ 0 = 1 , 这 显 然 是 不 可 能 的 , 所 以 不 是 所 有 的 非 零 矩 阵 都 能 找 到 矩 阵 B , 使 得 A B = B A = E \Rightarrow 0 = 1, 这显然是不可能的, 所以不是所有的非零矩阵都能找到矩阵B,使得AB=BA=E ⇒0=1,这显然是不可能的,所以不是所有的非零矩阵都能找到矩阵B,使得AB=BA=E
我们一般研究存在B矩阵, 使得 A B = B A = E 的 情 况 . AB=BA=E的情况. AB=BA=E的情况.
定义: 对n阶方阵A, 若有n阶矩阵B使得 A B = B A = E AB=BA=E AB=BA=E, 则称B为A的逆矩阵, 称A为可逆的.
(1) 逆矩阵是唯一的.A的逆矩阵记为: A − 1 A^{-1} A−1
证明: 设 B , C 都 是 A 的 逆 , 则 B = E B = ( C A ) B = C ( A B ) = C E = C B,C都是A的逆, 则 B=EB=(CA)B=C(AB)=CE=C B,C都是A的逆,则B=EB=(CA)B=C(AB)=CE=C
(2) 并非每个方阵都有逆矩阵.
思考: 1.方阵满足什么条件时可逆;2. 可逆时, 逆矩阵如何求.
定理: n阶方阵A可逆的充分必要条件是 ∣ A ∣ ≠ 0 |A| \neq0 ∣A∣=0
证明: 由 A 可 逆 得 知 A A − 1 = E , 两 边 取 行 列 式 由A可逆得知AA^{-1}=E, 两边取行列式 由A可逆得知AA−1=E,两边取行列式
∣ A A − 1 ∣ = ∣ A ∣ ∣ A − 1 ∣ = ∣ E ∣ = 1 ⇒ ∣ A ∣ ≠ 0 |AA^{-1}| = |A||A^{-1}| = |E| = 1 \Rightarrow |A| \neq0 ∣AA−1∣=∣A∣∣A−1∣=∣E∣=1⇒∣A∣=0
$由|A| \neq 0, AA^{\star} = A^{\star}A=|A|E $
⇒ A ( 1 ∣ A ∣ A ⋆ ) = ( 1 ∣ A ∣ A ⋆ ) = E \Rightarrow A(\frac{1}{|A|}A^{\star}) = (\frac{1}{|A|}A^{\star})=E ⇒A(∣A∣1A⋆)=(∣A∣1A⋆)=E
A − 1 = 1 ∣ A ∣ A ⋆ A^{-1}=\frac{1}{|A|}A^{\star} A−1=∣A∣1A⋆
∣ A ∣ ≠ 0 表 示 矩 阵 是 非 奇 异 的 , 非 奇 异 方 阵 一 定 是 满 秩 的 , 满 秩 矩 阵 的 等 价 标 准 形 是 单 位 矩 阵 |A|\neq 0 表示矩阵是非奇异的, 非奇异方阵一定是满秩的, 满秩矩阵的等价标准形是单位矩阵 ∣A∣=0表示矩阵是非奇异的,非奇异方阵一定是满秩的,满秩矩阵的等价标准形是单位矩阵
例: 求 A = [ a b c d ] ( a d − b c ≠ 0 ) 的 逆 A=\left[ \begin{matrix} a \quad b \\ c \quad d \end{matrix} \right](ad-bc\neq0)的逆 A=[abcd](ad−bc=0)的逆
解: A − 1 = 1 ∣ A ∣ A ⋆ = 1 a d − b c [ d − b − c a ] A^{-1}=\frac{1}{|A|}A^{\star}=\frac{1}{ad-bc}\left[ \begin{matrix} d \quad -b \\ -c \quad a \end{matrix} \right] A−1=∣A∣1A⋆=ad−bc1[d−b−ca]
练习:求以下矩阵的逆:
A = [ 1 0 − 1 1 ] , B = [ 1 − 2 3 1 ] , C = [ 2 − 3 1 4 ] A=\left[ \begin{matrix} 1 \quad 0 \\ -1 \quad 1 \end{matrix} \right], B=\left[ \begin{matrix} 1 \quad -2 \\ 3 \quad 1 \end{matrix} \right], C=\left[ \begin{matrix} 2 \quad -3 \\ 1 \quad 4 \end{matrix} \right] A=[10−11],B=[1−231],C=[2−314]