YOLOv9中train.py与train_dual.py的异同!


专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!!


先放结论:train.py是无“辅助分支”训练用的脚本,train_dual.py是含有辅助训练分支用的脚本!


        首先,train.py(左)与train_dual.py(右)中的损失函数是不一样的,这也解释了为什么使用train.py除了填入必要路径还要修改报错的"P[0]",而train_dual.py填入必要路径可以直接运行。

        其次,train.py较train_dual.py多一层输出判别。


如果觉得本文章有用的话给博主点个关注吧!


### 关于 `train_dual_custom` 的实现 在机器学习领域,尤其是涉及支持向量机 (SVM) 或其他优化算法时,`dual` 方法是一个常见的概念。它指的是通过拉格朗日乘子法将原问题转化为对偶形式来求解。对于 `train_dual_custom` 这样的函数名,可以推测其目的是自定义训练过程中的对偶方法。 以下是基于 SVM 对偶方法的一个简单 Python 实现示例: #### 使用 Scikit-Learn NumPy 的自定义 Dual 训练逻辑 ```python import numpy as np from sklearn.svm import SVC from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split def train_dual_custom(X, y, C=1.0, kernel='rbf', gamma='scale'): """ 自定义双目标训练函数。 参数: X: 特征矩阵 y: 标签数组 C: 正则化参数 kernel: 核函数类型 ('linear', 'poly', 'rbf' 等) gamma: RBF核的gamma值 返回: 受训模型对象 """ model = SVC(kernel=kernel, C=C, gamma=gamma, dual=True) # 设置 dual=True 表明使用对偶方法[^1] model.fit(X, y) return model # 数据生成分割 X, y = make_classification(n_samples=100, n_features=20, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 调用自定义训练函数 model = train_dual_custom(X_train, y_train, C=1.0, kernel='linear') print(f"模型得分: {model.score(X_test, y_test)}") ``` 上述代码展示了如何利用 Scikit-Learn 中的 `SVC` 类构建一个简单的对偶方法训练器,并允许用户指定不同的超参数(如正则化强度 `C` 核函数)。注意,在此例子中设置了 `dual=True` 来强制启用对偶方法。 --- #### Amazon EC2 GPU 实例的选择建议 如果计划运行深度学习任务并希望降低成本,则应考虑使用 AWS 提供的不同类型的 GPU 实例。根据最新技术趋势性价比分析,G4 实例被广泛认为是最具成本效益的选择之一[^2]。尽管 P2 实例仍可提供良好的性能表现,但它缺乏某些现代特性,比如 Tensor Core 支持以及混合精度训练能力,这使得 G4 成为了更优选项。 当部署此类计算密集型工作负载时,请务必评估具体需求后再做决定;例如,如果您需要极高吞吐量或特定硬件架构支持(如 NVIDIA 安培系列),那么可能还需要进一步研究更高规格的产品线。 --- ###
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值