RT-DETR(Ultralytics)训练参数总结及翻译

参数名称默认值描述
modelNone指定用于训练的模型文件。接受 .pt 预训练模型或 .yaml 配置文件的路径。对于定义模型结构或初始化权重至关重要。
dataNone数据集配置文件的路径(例如, coco8.yaml )。该文件包含特定于数据集的参数,包括到训练和验证数据的路径、类名和类数。
epochs100训练周期总数。每个epoch代表整个数据集的完整传递。调整这个值会影响训练时间和模型性能。
timeNone最大培训时间(以小时为单位)。如果设置了,这将覆盖 epochs 参数,允许训练在指定的持续时间后自动停止。对于时间限制的训练场景非常有用。
patience100在早期停止训练之前,在验证度量没有改进的情况下等待的epoch数。当表现停滞时,停止训练有助于防止过度拟合。
batch16批量大小,有三种模式:设置为整数(例如 batch=16 ),自动模式为60%的GPU内存利用率( batch=-1 ),或自动模式为指定的利用率分数( batch=0.70 )。
imgsz640用于训练的目标图像大小。所有图像在输入到模型之前都会被调整到这个尺寸。影响模型精度和计算复杂度。
saveTrue允许保存训练检查点和最终模型权重。用于恢复训练或模型部署。
save_period-1保存模型检查点的频率,以epoch指定。值为-1时禁用此特性。用于在长时间的训练期间保存临时模型。
cacheFalse启用在内存( True / ram )、磁盘( disk )或禁用( False )中缓存数据集图像。以增加内存使用为代价,通过减少磁盘I/O来提高训练速度。
deviceNone指定用于训练的计算设备:单个GPU ( device=0 ),多个GPU ( device=0,1 ), CPU ( device=cpu ),或用于Apple芯片的MPS ( device=mps )。
workers8用于数据加载的工作线程数(per  RANK 如果是多gpu训练)。影响数据预处理和输入模型的速度,在多gpu设置中特别有用。
projectNone保存培训输出的项目目录名称。允许有组织地存储不同的实验。
nameNone训练运行的名称。用于在项目文件夹中创建子目录,用于存储培训日志和输出。
exist_okFalse如果为True,则允许覆盖现有的项目/名称目录。可用于迭代实验,无需手动清除先前的输出。
pretrainedTrue确定是否从预训练的模型开始训练。可以是布尔值或到要从中加载权重的特定模型的字符串路径。提高培训效率和模型性能。
optimizer'auto'

训练优化器的选择。选项包括 SGD、 Adam 、 AdamW 、 NAdam 、 RAdam 、

 RMSProp 等,或者根据型号配置自动选择 auto 。影响收敛速度和稳定性。

verboseFalse支持训练期间的详细输出,提供详细的日志和进度更新。用于调试和密切监视培训过程。
seed0为训练设置随机种子,确保在相同配置的运行中结果的可重复性。
deterministicTrue强制使用确定性算法,确保再现性,但由于对非确定性算法的限制,可能会影响性能和速度。
single_clsFalse在训练期间将多类数据集中的所有类视为单个类。用于二元分类任务或关注对象存在而不是分类时。
rectFalse使矩形训练,优化批量组成最小填充。可以提高效率和速度,但可能会影响模型的准确性。
cos_lrFalse利用余弦学习率调度程序,调整学习率后,余弦曲线的epoch。有助于管理学习率以实现更好的收敛。
close_mosaic10在最后N次迭代中禁用马赛克数据增强,以在完成之前稳定训练。设置为0禁用此功能。
resumeFalse从上次保存的检查点恢复训练。自动加载模型权重、优化器状态和历元计数,无缝地继续训练。
ampTrue支持自动混合精度(AMP)训练,减少内存使用,并可能在对准确性影响最小的情况下加速训练。
fraction1.0指定要用于训练的数据集的部分。允许在完整数据集的子集上进行训练,对于实验或资源有限时非常有用。
profileFalse允许在训练期间对ONNX和TensorRT速度进行分析,有助于优化模型部署。
freezeNone通过索引冻结模型的前N层或指定层,减少可训练参数的数量。用于微调或迁移学习。
lr00.01最初的学习速率(即 SGD=1E-2 ,  Adam=1E-3 )。调整此值对于优化过程至关重要,它会影响模型权重更新的速度。
lrf0.01最终学习率作为初始学习率的一部分= ( lr0 * lrf ),与调度器一起使用以随时间调整学习率。
momentum0.937SGD的动量因子或Adam优化器的beta1,影响当前更新中过去梯度的整合。
weight_decay0.0005L2正则化项,惩罚大权重以防止过拟合。
warmup_epochs3.0学习率预热的epoch数,从一个较低的学习率逐渐增加到初始学习率,以稳定早期的训练。
warmup_momentum0.8热身阶段的初始动量,在热身期间逐渐调整到设定的动量。
warmup_bias_lr0.1预热阶段偏差参数的学习率,有助于稳定初始阶段的模型训练。
box7.5损失函数中盒损失分量的权重,影响对准确预测边界盒坐标的重视程度。
cls0.5总损失函数中分类损失的权重,影响正确分类预测相对于其他成分的重要性。
dfl1.5分布焦点损失的权重,在某些YOLO版本中用于细粒度分类。
pose12.0姿态估计模型中姿态损失的权重,影响了对准确预测姿态关键点的重视。
kobj2.0姿态估计模型中关键点目标损失的权重,平衡检测置信度和姿态精度。
label_smoothing0.0应用标签平滑,软化硬标签的混合目标标签和均匀分布的标签,可以提高泛化。
nbs64归一化损失的标称批量大小。
overlap_maskTrue确定在训练期间分割掩码是否应该重叠,适用于实例分割任务。
mask_ratio4分割蒙版的下采样率,影响训练时使用的蒙版的分辨率。
dropout0.0分类任务中正则化的失败率,通过在训练过程中随机省略单元来防止过拟合。
valTrue在训练期间启用验证,允许在单独的数据集上定期评估模型性能。
plotsFalse生成并保存训练和验证度量的图,以及预测示例,提供对模型性能和学习进展的可视化洞察。
### RT-DETR在Windows 10上的自定义数据集训练 #### 创建并配置虚拟环境 为了确保开发环境的一致性和稳定性,在开始之前创建一个新的Python虚拟环境是非常重要的。对于RT-DETR模型而言,推荐使用`conda`来管理依赖关系。 ```bash conda create -n rt python=3.8 conda activate rt ``` 这会建立一个名为`rt`的新环境,并激活它以便安装必要的库和工具[^2]。 #### 安装所需软件包 进入项目目录之后,通过执行下面命令可以按照需求安装所有必需的Python库: ```bash cd path\to\your\project\folder pip install -r requirements.txt ``` 这里假设已经下载了RT-DETR项目的源码到本地计算机中的某个路径下,并替换上述命令中的`path\to\your\project\folder`为实际的位置。 #### 准备数据集 当准备好了运行环境后,下一步就是准备好用于训练的数据集。通常情况下,这意味着要整理好图片文件以及对应的标注信息(比如边界框坐标)。如果打算扩展现有的类别,则需要注意调整标签编号使其连续地从零开始标记每一个新的对象种类。 #### 修改配置文件以适应个人需求 针对特定应用场景可能还需要进一步修改默认设置。例如更改输入图像尺寸、学习率调度策略或是增加额外的日志记录功能等。这些改动主要集中在几个核心脚本里完成,特别是`train.py`这个负责启动整个训练过程的主要入口程序。 #### 启动训练流程 最后一步就是在命令提示符窗口中键入如下指令从而正式开启训练阶段: ```cmd python tools\train.py ``` 此操作将在当前工作区根目录下的子文件夹内寻找预设好的参数表单(`config`)来进行迭代优化直至满足收敛条件为止[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值