RT-DETR更新汇总贴


RT-DETR使用教程:RT-DETR使用教程

缝合教程:深度学习模块创作(缝合)教程|适合1-360月小宝宝食用,干货满满

yaml文件详解:YOLO系列中的“data.yaml”详解!-CSDN博客

labelimg使用教程:深度学习工具|LabelImg(标注工具)的安装与使用教程

训练参数详解:RT-DETR(Ultralytics)训练参数总结及翻译


 2024/11/16及之前更新视频教程:YOLO融合CVPR、ECCV等十余种顶刊顶会模块,小白教程


特征提取模块

RT-DETR融合[CVPR2024]大核卷积IncepitonNeXt,模块与二创代码见2024/11/16日群文件。

RT-DETR融合特征细化前馈网络 FRFN[CVPR2024],模块与二创代码见2024/11/16日群文件。

RT-DETR融合[ECCV2024]自调制特征聚合SMFA模块,模块与二创代码见2024/11/16日群文件。

RT-DETR融合可变核卷积AKConv模块及相关改进思路,模块与二创代码见2024/11/16日群文件。

RT-DETR融合ICCV[2023]动态蛇形卷积Dynamic模块,模块与二创代码见2024/11/16日群文件。

RT-DETR融合CVPR[2023]空间和通道重建卷积ScConv模块,模块代码见2024/11/16日群文件。

RT-DETR融合CVPR[2020]自校准卷积SCConv模块,模块与二创代码见2024/11/16日群文件。

RT-DETR融合CVPR[2020]轻量化卷积模块Ghost Module模块,模块代码见2024/11/16日群文件。

RT-DETR融合NeurIPS[2022]Ghost Module v2模块,模块与二创代码见2024/11/16日群文件。

RT-DETR融合ICCV[2023]倒残差移动块iRMB模块,模块与二创代码见2024/11/16日群文件。

RT-DETR融合CVPR[2024]无膨胀多尺度卷积PKI模块,模块与二创代码见2024/11/23日群文件。

RT-DETR融合CVPR[2024]自适应扩张卷积FADC模块,模块代码见2024/11/23日群文件。

RT-DETR融合GhostModel V3及相关改进思路,模块代码见2024/11/23日群文件。

RT-DETR融合[CVPR2023]FasterNet种的PConv及相关改进思路,代码见2024/11/23日群文件。

RT-DETR融合针对小目标FFCA-YOPLO中的FEM模块,模块代码见2024/11/23日群文件。


RT-DETR融合[TIP2023]DehazeFormer中的SKFusion模块,模块代码见2024/11/23日群文件。

RT-DETR融合针对去雾场景的DEA-Net中的细节增强注意力模块,见2024/11/23日群文件。

RT-DETR融合[NeurlS2022]递归门控卷积gnconv模块及相关改进思路,见2024/11/30日群文件。

RT-DETR融合[CVPRW2024]MAN中的MLKA模块及相关改进思路,见2024/11/30日群文件。

RT-DETR融合Conv2Former中的ConvMod模块及相关改进思路,见2024/11/30日群文件。

RT-DETR融合[ECCV 2018]RCAN中的RCAB模块及相关改进思路,见2024/11/30日群文件。

RT-DETR融合PIDNet中的PagFM模块及相关改进思路,见2024/11/30日群文件。

RTDETR融合FCMNet中的WCMF模块及相关改进思路,见2024/12/7日群文件。

RTDETR融合[ECCV2024]WTConvNeXt中的WTConv模块及相关改进思路,见2024/12/7日群文件。

RT-DETR融合[CVPR2024]TransNeXt中的CGLU模块及相关改进思路,见2024/12/14日群文件。

 RT-DETR融合[ECCV 2024]CGRSeg中的RCM模块,见2024/12/14日群文件。

RT-DETR融合[CVPR2024]EMCAD中的上采样模块,见2024/12/14日群文件。

RT-DETR融合[CVPR2024]EMCAD中的特征提取模块,见2024/12/14日群文件。

RT-DETR融合[CVPR2024]Starnet中的star block取模块,见2024/12/14日群文件。

RT-DETR融合[ECCV2024]FADformer中的FFCM模块,见2024/12/29日群文件。

RT-DETR融合[CVPR2023]FFTformer中的FSAS模块,见2024/12/29日群文件。

RT-DETR融合U-Net v2中的SDI模块,见2024/12/29日群文件。

RT-DETR融合[NeurIPS2023]GoldYOLO中的GD模块,见2024/12/29日群文件。

RT-DETR融合[IJCV2024]LSKNet中的LSKBlock模块,见2024/12/29日群文件。

RT-DETR融合[ECCV2024]SFHformer中的模块,见2024/12/29日群文件。

RT-DETR融合[CVPR2022]的MDHTA多头自注意力机制,见2025/1/11日群文件。RT-DETR融合[AAAI2025]的ConSeg中的模块,见2025/1/11日群文件。

RTDETR融合[AAAI2025]的Mesorch 模型中的高、低频特征提取模块,见2025/1/11日群文件。

RTDETR融合[AAAI2025]的TBSN中的DilatedMDTA模块,见2025/1/11日群文件。

RTDETR融合[CVPR205]ARConv中的自适应矩阵卷积,见2025/3/15日群文件。

RTDETR融合[CVPR205]SCSegamba中的GBC结构,见2025/3/15日群文件。

RT-DETR融合YOLOv12中的R-ELAN结构,见2025/3/15日群文件。

RTDETR融合何凯明[CVPR2025]新作DyT结构,见2025/4/5日群文件。

RTDETR融合[CVPR2025]HVI-CIDNet中的HV_LCA模块,见2025/4/5日群文件。

RTDETR融合[CVPR2025]DnLUT中的MuLUTUnit模块,见2025/4/5日群文件。

RTDETR融合[CVPR2025]BHViT中的token_mixer模块,见2025/419日群文件。

RTDETR融合[CVPR2025]DarkIR中的DBlock模块,见2025/419日群文件。


损失函数

 RT-DETR融合Inner-IoU及相关改进思路,见2024/11/30日群文件。

RT-DETR融合Focal-IoU及相关改进思路,见2024/11/30日群文件。

RT-DETR融合Focaler-IoU及相关改进思路,见2024/11/30日群文件。


上、下采样

 RT-DETR融合[ICCV2019]CARAFE中的上采样模块,见2024/12/21日群文件。

RT-DETR融合[ICCV2023]DySample中的上采样模块,见2024/12/21日群文件。

RT-DETR融合[AAAI2025]的ConSeg中的CDFAPreprocess模块,见2025/1/11日群文件。

 RT-DETR融合轻量化下采样ds_模块,见2024/12/29日群文件。

RT-DETR融合YOLOv9的下采样模块ADown,见2025/1/11日群文件。


Neck

 RT-DETR融合[CVPR2020]EfficientDet中的BiFPN结构,见2025/1/11日群文件。

RTDETR融合渐进型金字塔AFPN结构,见2025/1/11日群文件。

<think>嗯,用户问的是“Failed to Load class org.slf4j.impl.StaticLoggerBinder”这个错误。我得先回忆一下这个问题通常出现在什么情况下。好像和SLF4J有关,对吧?SLF4J是一个日志门面库,它需要具体的日志实现,比如Logback、Log4j之类的。如果项目中没有正确的绑定器,就会报这个错误。 首先,我应该解释这个错误的原因。用户可能不太清楚SLF4J的工作原理,所以需要简单说明门面模式和需要绑定实现库的概念。然后,常见的解决办法应该是添加一个具体的日志依赖,比如slf4j-simple或者Logback。可能还需要提到依赖冲突的问题,比如多个绑定库被引入导致的问题。 接下来,用户可能不知道怎么检查依赖,所以需要给出具体的Maven或Gradle配置示例。比如在Maven中添加slf4j-simple的依赖,或者推荐使用Logback的配置。同时,提醒他们注意版本兼容性,确保SLF4J的API版本和绑定的版本一致。 另外,用户可能在测试时遇到这个问题,特别是在使用某些框架如Spring Boot时,默认可能已经有日志实现,但有时候测试依赖可能没有正确引入。这时候可能需要检查测试范围的依赖。 还有,用户可能不知道如何排除冲突的依赖,这时候需要教他们用Maven的exclusion标签或者Gradle的exclude方法。比如,如果他们引入了Log4j的桥接器但没有核心实现,或者同时引入了多个绑定库,就会出问题。 最后,可能需要给出一个检查步骤,帮助用户一步步排查问题,比如检查依赖树,确认是否有且只有一个绑定库,版本是否正确等。这样用户就能自己动手解决问题了。 要确保回答清晰,分点说明,用中文,避免技术术语过多,但又要准确。可能需要给出代码示例,比如pom.xml或build.gradle的配置片段,这样用户可以直接复制粘。同时,提醒常见的陷阱,比如版本不匹配或多余依赖,这些是常见的问题来源。 总结一下,回答的结构应该是:错误原因、解决方案(添加依赖、解决冲突)、示例配置、检查步骤。这样用户能按部就班地解决问题。</think>你遇到的 `Failed to Load class org.slf4j.impl.StaticLoggerBinder` 错误是 **SLF4J(Simple Logging Facade for Java)** 的常见问题,主要原因是缺少 SLF4J 的日志实现库。以下是详细解释和解决方案: --- ### **错误原因** 1. **SLF4J 的门面模式** SLF4J 是一个日志门面(抽象层),它本身不提供日志实现,需要依赖具体的日志库(如 Logback、Log4j 等)。 - ❌ 错误触发条件:项目中只引入了 `slf4j-api`(接口),但未添加任何实现库(如 `slf4j-simple`、`logback-classic` 等)。 2. **依赖冲突** 项目中可能存在多个 SLF4J 的绑定库(如同时引入 `slf4j-log4j12` 和 `logback-classic`),导致 SLF4J 无法确定使用哪个实现。 --- ### **解决方案** #### 1. 添加 SLF4J 的日志实现库 选择以下任意一种日志实现库添加到项目依赖中: - **方案 1:使用 SimpleLogger(最小化配置)** ```xml <!-- Maven --> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-simple</artifactId> <version>2.0.9</version> <!-- 使用与 slf4j-api 匹配的版本 --> </dependency> ``` - **方案 2:使用 Logback(推荐)** ```xml <!-- Maven --> <dependency> <groupId>ch.qos.logback</groupId> <artifactId>logback-classic</artifactId> <version>1.4.14</version> </dependency> ``` - **方案 3:使用 Log4j2** ```xml <!-- Maven --> <dependency> <groupId>org.apache.logging.log4j</groupId> <artifactId>log4j-slf4j2-impl</artifactId> <version>2.23.1</version> </dependency> ``` --- #### 2. 解决依赖冲突 如果已添加日志实现库仍报错,检查是否有多个 SLF4J 绑定库共存。例如: - ❌ 同时存在 `slf4j-log4j12` 和 `logback-classic` - ❌ 旧版本 SLF4J(如 1.x)与新版本实现库不兼容 使用 Maven/Gradle 的依赖分析工具排除冲突: ```xml <!-- Maven 示例:排除冲突的 log4j 绑定 --> <dependency> <groupId>some-group</groupId> <artifactId>some-artifact</artifactId> <exclusions> <exclusion> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> </exclusion> </exclusions> </dependency> ``` --- ### **验证步骤** 1. 检查依赖树: ```bash # Maven mvn dependency:tree # Gradle gradle dependencies ``` 确保只有一个 SLF4J 绑定库存在,且版本与 `slf4j-api` 一致。 2. 如果使用 Spring Boot: Spring Boot 默认集成 Logback,无需额外配置。若手动排除 Logback,需显式添加其他实现库。 --- ### **总结** - **核心问题**:缺少 SLF4J 的日志实现库。 - **关键操作**:添加一个且仅一个 SLF4J 兼容的日志实现库。 - **避坑提示**:避免混用多个日志实现,确保版本一致。 如果问题仍未解决,请提供 `pom.xml` 或 `build.gradle` 依赖配置,我会进一步帮你排查!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值