RTDETR融合何凯明[CVPR2025]新作DyT结构


RT-DETR使用教程: RT-DETR使用教程

RT-DETR改进汇总贴:RT-DETR更新汇总贴


《Transformers without Normalization》

一、 模块介绍

        论文链接:https://arxiv.org/pdf/2503.10622

        代码链接:https://jiachenzhu.github.io/DyT/

论文速览:

        归一化层在现代神经网络中无处不在,长期以来一直被认为是必不可少的。这项工作表明,没有归一化的 Transformers 可以使用一种非常简单的技术实现相同或更好的性能。我们引入了动态 tanh (DyT),这是一种元素运算 DyT(x) = tanh(αx),作为 Transformer 中归一化层的直接替代品。DyT 的灵感来自于以下观察结果:Transformers 中的层归一化通常会产生类似 tanh 的 S 形输入-输出映射。通过合并 DyT,没有归一化的 Transformer 可以达到或超过其归一化对应项的性能,大多数情况下无需超参数调整。我们验证了 Transformers with DyT 在不同环境中的有效性,从识别到生成,从监督学习到自我监督学习,从计算机视觉到语言模型。这些发现挑战了归一化层在现代神经网络中不可或缺的传统理解,并为它们在深度网络中的作用提供了新的见解。

总结:文章提出一种DyT结构,可用于代替归一化。


⭐⭐本文二创模块仅更新于付费群中,往期免费教程可看下方链接⭐⭐

RT-DETR更新汇总贴(含免费教程)文章浏览阅读264次。RT-DETR使用教程:缝合教程: RT-DETR中的yaml文件详解:labelimg使用教程:_rt-deter https://xy2668825911.blog.csdn.net/article/details/143696113


二、二创融合模块

2.1 相关二创模块及所需参数

        Conv-Dyt模块 

2.2 更改yaml文件 (以自研模型加入为例)

yam文件解读:YOLO系列 “.yaml“文件解读_yolo yaml文件-CSDN博客

       打开更改ultralytics/cfg/models/rt-detr路径下的rtdetr-l.yaml文件,替换原有模块。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 512]
#  n: [ 0.33, 0.25, 1024 ]
#  s: [ 0.33, 0.50, 1024 ]
#  m: [ 0.67, 0.75, 768 ]
#  l: [ 1.00, 1.00, 512 ]
#  x: [ 1.00, 1.25, 512 ]
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv_DyT, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, CCRI, [128, 5, True, False]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 4, CCRI, [256, 3, True, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 4, CCRI, [512, 3, True, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, CCRI, [1024, 3, True, False]]

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 11, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [6, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 13 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 2, RepC4, [256]] # 15, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 16, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [4, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 18 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, RepC4, [256]] # X3 (20), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 16], 1, Concat, [1]] # cat Y4
  - [-1, 2, RepC4, [256]] # F4 (23), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 24, downsample_convs.1
  - [[-1, 11], 1, Concat, [1]] # cat Y5
  - [-1, 2, RepC4, [256]] # F5 (26), pan_blocks.1

  - [[20, 23, 26], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐


 2.2 修改train.py文件

       创建Train_RT脚本用于训练。

from ultralytics.models import RTDETR
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

if __name__ == '__main__':
    model = RTDETR(model='ultralytics/cfg/models/rt-detr/rtdetr-l.yaml')
    # model.load('yolov8n.pt')
    model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,
                amp=True, mosaic=False, project='runs/train', name='exp')

         在train.py脚本中填入修改好的yaml路径,运行即可训。


关于何凯明(Kaiming He)在CVPR 2025的具体研究或论文贡献,目前尚未有确切的信息公开。然而,基于他以往的研究方向以及其团队的工作重点,可以推测未来可能涉及的方向。 何凯明以其在计算机视觉领域的重要贡献而闻名,尤其是在卷积神经网络的设计上。他的代表性工作包括ResNet(残差网络),该模型通过引入残差连接解决了深层网络训练中的梯度消失问题[^3]。此外,他还提出了Mask R-CNN,在目标检测和实例分割方面取得了显著成果[^4]。 尽管具体到CVPR 2025的内容尚不可知,但考虑到当前技术趋势和发展脉络,预计以下几个主题可能会成为关注焦点: 1. **改进版Transformer架构应用于视觉任务** Transformer已经在自然语言处理领域取得巨大成功,并逐渐渗透至图像理解等领域。何凯明及其同事或许会探索更高效的多模态融合方法或者轻量化设计策略来优化性能表现。 2. **自监督学习与无标注数据利用** 随着大规模预训练模型兴起,如充分利用未标记的数据资源成为一个热点话题。他们可能进一步挖掘对比学习框架下的新机制以增强特征表达能力。 以下是假设的一个简化代码片段展示如实现一种简单的残差单元结构: ```python import torch.nn as nn class ResidualBlock(nn.Module): def __init__(self, channels): super().__init__() self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) def forward(self, x): residual = x out = self.relu(self.conv1(x)) out = self.conv2(out) out += residual # Add the input directly to output. return out ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值