何为用户画像?
用户画像作为当下描述用户、运营营销的重要工具;根据埋点采集回来的用户属性,用户行为等相关信息,我们将这些信息进行沉淀、加工和抽象,形成一个以用户标志为主key的标签树,用于全面刻画用户属性和行为信息,这就是画像;
标签的分类:直采型、统计型、挖掘型、预测型;
目标:以描述人为核心,了解人,结合特定业务场景下剖析我们行为背后的底层逻辑;
标签的生命周期管理
标签都是有时效的,有静态标签和动态标签,静态:自标签生成起,就不需要更新,例如用户的社会性别;动态:用户行为偏好等用户对产品功能模块或者商品内容的偏好变化频繁,所以应对的标签是动态的,标签是否需要按照什么方式什么频次更新什么时间的数据,是标签管理中重要的一环。
什么场景下使用用户画像?
在产品的整个生命周期中,都会使用到画像,而早期和发展期可以帮助产品和运营深入了解目标群体,认识用户,快速抓住需求,精准下手,提高运营效率。
场景1:了解用户
场景2:精准营销
场景3:优化渠道
场景4:个性推荐
场景5:产品创新
用户画像构建思路
从0到1的构建思路:
满足两个条件:高概括性和强延展性,概括性指这个结构体系可以很好的包含一个用户的基本属性和产品交互的相关行为,同时对业务的重点有单独强调,没有遗漏;强延展指结构全面同时有抽象概括能力,保证新增标签可以很好的找到对应的分类,体系不会过于收敛局限。
依据以上原则画像通常从8个维度出发组织,分别:用户基本属性、平台属性、行为属性、产品偏好、兴趣偏好、敏感度、消费属性、用户生命周期以及用户价值
用户基本属性:指用户基本社会属性和变更频率低的特征,例如真实社会年龄、性别、昵称、账号、婚姻状态等
平台属性:用户在平台表现出的基本属性特征,利用行为数据计算挖掘,标识用户真实属性例如:位置信息,经过和平台结合计算后的性别、年龄划分出来的标签,典型的算法挖掘型标签
行为属性:记录的是用户的全部单点行为,涵盖启动、登录、浏览、点击、加车、下单等一系列行为,想要全面梳理可用(产品*功能模块*用户行为*时间)这四大要素来组织
......就不过多细写了
从1到100构建思路:
这里要解决“如何做”和“如何用”这两大问题;
用户画像的主要目的:了解用户和产品、精准营销、用于算法挖掘(沉淀用户,供模型使用)这作为目标吧
1、统计,对产品、对用户的基本认知
即用户是谁?有何特点?基本情况如何?围绕这几个重要问题出发,思路拆解:这里涵盖年龄、性别、居住城市(几线)、婚否等,结合利益考虑有基本的收入水平、消费能力等维度,构建对应标签,进行分布统计,便可生成一份用户认知报告,标签结果:年龄、性别等。
产品认知的思路类似,找到对应维度,统计即可。
2、精准营销
运营作为画像的核心需求方,让没一个运营动作都最大化收益,标签是必不可少的工具,不难发现关键词是“流失用户”、“利益点”、“push”、“效率”;思路拆解:流失用户是用户身份识别,利益点是用户优惠敏感度,push是渠道、效率是准确率选人群的精准匹配。
第一步,敲定流失用户口径,这里需要依据用户和产品的生命周期划分,从中识别并标识出流失用户;
第二步,分析对流失用户拉回效果最好的利益点,用过往的数据验证或者某个爆款产品的吸引力,这一步需要同运营一同分析完成,挖掘不同用户对优惠折扣敏感度;
第三步,确定拉回的人群目标,结合push,思路拆解:商品的目标用户----商品可以按照哪些维度拆分关键信息?模块位置----用户的模块功能使用偏好是什么?准确度的要求----如何提升画像应用的准确率?这几个问题解决了,这个需求的标签也就找到了;
3、挖掘,主要应用于搜索推荐、风控广告等策略方向
这里就抽象化一点了,推荐系统的本质是从海量信息中计算用户最感兴趣的部分,对应推荐系统的“召回--粗排--精排”,是一个层层精选的过程;思路拆解:召回是粗筛,帮助系统计算第一道用户兴趣池(品牌、类目、商品标签等维度下的标签),只需要在所有品牌、类目标签下维护一个按照商品质量或者热度降序排列的列表,这样只要获取用户标识便能从画像中获取偏好的品牌类目和标签。再从这类标签下的商品列表中召回相应的商品,跟进选集大小的设计,做top k截断召回,就可以进入下一个粗排-精排的流程了。(欢迎大佬指点,粗略描述下)