数据结构 顺序表
你好,这里是新人 Sunfor
这篇是我最近对于数据结构 顺序表的学习心得和错题整理
有任何错误欢迎指正,欢迎交流!
会持续更新,希望对你有所帮助,我们一起学习,一起进步
前言
一、顺序表的基本概念和结构设计
1.线性表
在介绍顺序表之前,我们先要了解什么是 线性表
线性表是n个具有相同特性的数据元素的有限序列。线性表是一种在实际中广泛使用的的数据结构
常见的线性表:顺序表、链表、栈、队列、字符串
线性表在逻辑上是线性结构,也就是说是连续的一条直线
但是在物理结构上并不一定是连续的,线性表在物理上存储时,通常以数组和链式结构的形式存储
2.顺序表的概念
顺序表是一种线性表的存储结构,它将线性表的元素按照顺序存放在一段连续的内存空间中(物理地址连续),一般情况下采用数组存储
顺序表和数组的区别在哪呢?
首先 顺序表绝对不等于数组
我们来结合图像理解一下:
简单来理解:
数组类似于苍蝇馆子 顺序表类似于米其林餐厅
3.顺序表的结构
顺序表的结构体设计通常包括:存储数据的数组指针、当前元素的个数以及顺序表的最大容量
#include<stdio.h> #include<stdlib.h> typedef struct { int* data;//存储元素的动态数组指针 int length;//当前元素个数 int capacity;//最大容量 }SeqList;
4.顺序表的分类
静态顺序表
使用定长数组存储元素
缺点:使用定长数组,给少了造成不够用,给多了造成空间浪费
动态顺序表
动态顺序表可以根据需要 自动扩展或缩小,减少了内存的浪费
动态顺序表支持随机访问,能够在常数时间内通过索引访问任何元素
二、顺序表的基本操作
初始化、插入、删除、查找、更新、遍历
我们等会儿在顺序表的实现中就会展示
三、顺序表的代码实现
在实现之前我们也需要合理使用多文件操作
例如扫雷这篇博客,我们需要建立3个文件
- SeqList.h :存放整个程序需要的声明,同时也类似于目录的作用
- SeqList.c :所需函数的定义
- text.c :函数的具体实现,以及主函数
SeqList.h
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
//定义一个动态顺序表的结构
typedef int SLDatatype;//不确定具体的数据类型,先定义一个SLDatatype 方便后面的修改
typedef struct SqList{
SLDatatype* arr;//动态数组,存储顺序表元素
int capacity;//记录当前空间的大小
int size;//有效数据的个数
}SL;//定义一个更好记的名字
//初始化
void SLInit(SL* ps);
//销毁
void SLDestory(SL* ps);
//打印
void SLPrint(SL* ps);
//插入数据
void SLPushBack(SL* ps,SLDatatype x);//尾插
void SLPushFront(SL* ps,SLDatatype x);//头插
//删除
void SLPopBack(SL* ps);//尾删
void SLPopFront(SL* ps);//头删
//在指定位置之前插入数据
void SLInsert(SL* ps,SLDatatype x,int pos);
//删除指定位置的数据
void SLErase(SL* ps,int pos);
//查找数据
int SLFind(SL* ps,SLDatatype x);
SeqList.c
#include"SeqList.h"
//初始化
void SLInit(SL* ps)
{
ps->arr = NULL;//初始化数组指针为NULL,表示当前没有分配内存
ps->size = ps->capacity = 0;//有效元素个数和容量初始化为0,表示顺序表为空且尚未分配空间
}
//销毁
void SLDestory(SL* ps)
{
if(ps->arr)//相当于ps->arr != NULL
{
free(ps->arr);
}
ps->arr = NULL;
ps->capacity = ps->size = 0;
}
//打印顺序表
void SLPrint(SL* ps)
{
for(int i = 0;i < ps->size;i++)
{
printf("%d ",ps->arr[i]);
}
printf("\n");
}
//检查空间是否足够
void SLCheckCapacity(SL* ps)
{
if(ps->size == ps->capacity)//空间不足
{
//增容
//若capacity=0,就先给个默认值,否则*2
int newCapacity = ps->capacity == 0?4:2* ps->capacity;
//动态申请一块空间
SLDatatype* tmp = ps->arr = (SLDatatype*)realloc(ps->arr,newCapacity* sizeof(SLDatatype));
if(tmp ==NULL)
{
perror("realloc fail!");
exit(1);
}
//更新数据
ps->arr = tmp;
ps->capacity = newCapacity;
}
}
//尾插
void SLPushBack(SL* ps,SLDatatype x)
{
assert(ps);//传入的指针不能为空
SLCheckCapacity(ps);
ps->arr[ps->size++] = x;//将元素添加到数组末尾,并增加有效元素个数
}
//头插
void SLPushFront(SL* ps,SLDatatype x)
{
assert(ps);
SLCheckCapacity(ps);
for(int i = ps->size;i > 0;i--)//从当前顺序表的最后一个有效元素开始,向前移动元素,为插入新元素腾出空间,
{
ps->arr[i] = ps->arr[i - 1];
}
//下标为0的位置空出来
ps->arr[0] = x;
//插入之后size也后移
ps->size++;
}
举个例子方便大家理解
//尾删
void SLPopback(SL* ps)
{
//说明顺序表不为空
assert(ps);
assert(ps->size);
//把最后一个数据删掉
//ps->arr[ps->size - 1] = -1;//多余了
ps->size--;//虽然后面有数据,但不是有效数据,对后续的计算不影响,新的数据会直接覆盖上去
}
//头删
void SLPopFront(SL* ps)
{
assert(ps);
assert(ps->size);
//数据整体向前挪动一位
for (int i = 0;i<ps->size-1; i++)
{
ps->arr[i] = ps->arr[i + 1];//i = size -2
}
//删除一个数据size前移
ps->size--;
}
//在指定位置之前插入数据
void SLInsert(SL* ps, SLDatatype x, int pos)
{
assert(ps);
// = 头插 = 尾插
assert(pos >= 0 && pos <= ps->size);
//判断空间是否足够
SLCheckCapacity(ps);
//pos及之后的数据整体向后移一位
for (int i = ps->size; i > pos; i--)
{
ps->arr[i] = ps->arr[i - 1];//pos+1 -> pos
}
ps->arr[pos] = x;
ps->size++;
}
// 删除指定位置的数据
void SLErase(SL* ps, int pos)
{
assert(ps);
// 不能= size为最后一个数据
assert(pos >= 0 && pos < ps->size);
for (int i = pos;i < ps->size-1;i++)
{
ps->arr[i] = ps->arr[i + 1];//size - 2 <- size -1
}
ps->size--;
}
//查找数据
int SLFind(SL* ps, SLDatatype x)
{
assert(ps);
for (int i = 0; i < ps->size; i++)
{
if (ps->arr[i] == x)
{
return i;
}
}
//没有找到:返回一个无效的下标
return -1;
}
text.c
#include"SeqList.h"
void SLtest01()
{
SL s;
SLInit(&s);//得把地址传过去 值才会改变
SLPushBack(&s, 1);
SLPushBack(&s, 2);
SLPushBack(&s, 3);
SLPushBack(&s, 4);
//SLPushFront(&s, 1);
//SLPushFront(&s, 2);
//SLPushFront(&s, 3);
//SLPushFront(&s, 4);
SLPrint(&s);//1 2 3 4
//SLPopback(&s);
//SLPrint(&s);
//SLPopback(&s);
//SLPrint(&s);
//SLPopback(&s);
//SLPrint(&s);
//SLPopback(&s);
//SLPrint(&s);
//为空就不能再删
//SLPopFront(&s);
//SLPrint(&s);
//SLPopFront(&s);
//SLPrint(&s);
//SLPopFront(&s);
//SLPrint(&s);
//SLPopFront(&s);
//SLPrint(&s);
//不能对空顺序表继续删除
//SLInsert(&s, 11, 0);
//SLPrint(&s);
//SLInsert(&s, 22, s.size);
//SLPrint(&s);
//SLInsert(&s, 33, 2);
//SLPrint(&s);
//SLErase(&s, 0);
//SLPrint(&s);
//SLErase(&s, s.size-1);
//SLPrint(&s);
//SLErase(&s, 1);
//SLPrint(&s);
SLFind(&s, 2);
int find = SLFind(&s, 222);
if (find < 0)
{
printf("没找到!\n");
}
else
{
printf("找到了!\n");
}
SLDestory(&s);
}
int main()
{
SLtest01();
return 0;
}
- 注意,在顺序表的实现过程中,我们还是要常用调试,这样更容易发现错误,也方便我们去理解
四、顺序表的优缺点
1.优点
- 随机访问:顺序表允许 O(1) 时间复杂度的随机访问,可以直接通过索引访问任何元素。
- 内存局部性:顺序表中的元素存储在连续的内存地址中,有助于提高缓存命中率,进而提升访问速度。
- 简单实现:顺序表的实现相对简单,常用操作(如插入、删除、遍历)易于理解和实现。
- 空间效率:在没有太多插入和删除操作的情况下,顺序表的空间利用效率较高,因为其元素是连续存储的。
- 动态扩展:许多实现支持动态扩展,能够在需要时自动增加容量,适应不同大小的需求。
- 简化的内存管理:相较于链表,顺序表的内存管理较为简单,通常只需一次性申请一块内存即可。
- 易于实现算法:某些算法(如排序、查找等)在顺序表上实现时,往往更加高效和简洁。
2.缺点
- 固定容量:在创建时通常需要指定初始容量,若超出容量需进行扩展,扩展过程可能导致性能下降。
- 插入和删除效率低:在中间位置插入或删除元素时,需要移动大量元素,时间复杂度为 O(n)。
- 内存浪费:为了避免频繁扩展,可能会预留额外的内存,这在某些情况下可能导致空间浪费。
- 不支持复杂数据结构:顺序表适合存储简单数据,处理复杂对象时,灵活性较差。
- 数据类型限制:在一些语言中,顺序表要求所有元素为同一数据类型,限制了灵活性。
五、顺序表的算法题整理
顺序表的合并
题目要求:
给你两个按非递减顺序排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n
如果用顺序表去做这道题我们该怎么去考虑呢
首先顺序表的 底层逻辑是数组,所以我们先用数组去解决这道题目
给定两个数组,分别给定三个指针,一个指向第一个数组的最后一个元素,一个指向第二个数组的最后一个元素,一个指向两个数组合并后的数组的最后一个元素
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n) {
int l1 = m - 1;//nums1的有效元素最后一个索引
int l2 = n - 1;//nums2的有效元素最后一个索引
int l3 = m + n - 1;// 合并后数组的最后一个索引
while (l1 >= 0 && l2 >= 0)
{
if (nums1[l1] > nums2[l2])
{
nums1[l3--] = nums1[l1--];//将较大的元素放在合并后数组
}
else
{
nums1[l3--] = nums2[l2--];//将较大的元素放在合并后数组
}
}
while (l2 >= 0)
{
nums1[l3--] = nums2[l2--];//如果nums2还有剩余元素,将其放在nums1中
}
}
那如果我们使用 顺序表 去解决类似的问题呢
已知顺序表L1和L2中数据均由小到大排序,请用尽可能快的方法将L1与L2中的数据合并到L3中,使数据在L3中按升序排列
#include <stdio.h>
#include <stdlib.h>
#define MAXSIZE 100
typedef struct {
int data[MAXSIZE];
int length;
} SQList;
void init(SQList* L);
void print(const SQList* L);
void merge(const SQList* L1, const SQList* L2, SQList* L3);
int main() {
SQList L1, L2, L3;
// 初始化 L1 和 L2
printf("初始化线性表 L1:\n");
init(&L1);
printf("初始化线性表 L2:\n");
init(&L2);
// 合并 L1 和 L2 到 L3
merge(&L1, &L2, &L3);
// 打印合并后的线性表 L3
printf("合并后的线性表 L3:\n");
print(&L3);
return 0;
}
// 初始化线性表
void init(SQList* L) {
printf("请输入线性表的长度 (最多 %d): ", MAXSIZE);
scanf("%d", &(L->length));
// 确保长度不超过 MAXSIZE
if (L->length > MAXSIZE) {
L->length = MAXSIZE;
printf("输入长度超过最大值,已设置为 %d。\n", MAXSIZE);
}
printf("请输入线性表的数据(要求有序):\n");
for (int i = 0; i < L->length; i++) {
printf("元素 %d: ", i + 1);
scanf("%d", &(L->data[i]));
}
}
// 合并两个有序线性表
void merge(const SQList* L1, const SQList* L2, SQList* L3) {
int i = 0, j = 0, k = 0;
// 合并过程
while (i < L1->length && j < L2->length) {
if (L1->data[i] < L2->data[j]) {
L3->data[k++] = L1->data[i++];
} else {
L3->data[k++] = L2->data[j++];
}
}
// 复制剩余元素
while (i < L1->length) {
L3->data[k++] = L1->data[i++];
}
while (j < L2->length) {
L3->data[k++] = L2->data[j++];
}
// 设置 L3 的长度
L3->length = k;
}
// 打印线性表数据
void print(const SQList* L) {
printf("线性表的数据: ");
for (int i = 0; i < L->length; i++) {
printf("%d ", L->data[i]);
}
printf("\n"); // 打印换行
}
顺序表的奇偶数划分
尽可能快地将顺序表L中的所有奇数调整到表的左边,所有偶数调整到表的右边
首先我们要将左边的偶数和右边的奇数都找出来,再进行交换
#include <stdio.h>
#include <stdlib.h>
typedef struct {
int *data;
int length;
} sequence_list;
// 初始化线性表
void init(sequence_list *L, int n) {
L->data = (int *)malloc(n * sizeof(int));
L->length = n;
for (int i = 0; i < n; i++) {
scanf("%d", &L->data[i]);
}
}
// 输出线性表
void Print(sequence_list *L) {
for (int i = 0; i < L->length; i++) {
printf("%d", L->data[i]);
if (i < L->length - 1) {
printf(" ");
}
}
printf("\n");
}
// 重新排列奇偶数
void partition(sequence_list *L) {
int left = 0, right = L->length - 1;
while (left < right) {
// 找到左边的偶数
while (left < right && L->data[left] % 2 != 0) {
left++;
}
// 找到右边的奇数
while (left < right && L->data[right] % 2 == 0) {
right--;
}
// 交换
if (left < right) {
int temp = L->data[left];
L->data[left] = L->data[right];
L->data[right] = temp;
}
}
}
int main() {
int n;
scanf("%d", &n);
sequence_list L;
init(&L, n);
partition(&L);
Print(&L);
// 释放内存
free(L.data);
return 0;
}
顺序表的学习我们先在此告一段落,之后在学习数据结构的过程中还会有顺序表的补充内容随机掉落,其他数据结构的相关知识也会陆续更新,大家可以持续关注~