推荐系统 - Google多目标学习MMOE(附tf2.0实现)

本文收录在推荐系统专栏,专栏系统化的整理推荐系统相关的算法和框架,并记录了相关实践经验,所有代码都已整理至推荐算法实战集合(hub-recsys)

1.背景

何谓多任务,即在一个模型中考虑多个目标。在推荐系统中,往往需要同时优化多个业务目标,承担起更多的业务收益。如电商场景:希望能够同时优化点击率和转换率,使得平台具备更加的目标;信息流场景,希望提高用户点击率的基础上提高用户关注,点赞,评论等行为,营造更好的社区氛围从而提高留存。当前多任务的迭代进程是 stacking ——> shared bottom layer(hard)  ——> shared bottom layer(soft) 

 

2. MMoE简介

MMoE 是Google的研究人员提出的一种NN模型中多目标优化的模型结构。MMoE为每一个模型目标设置一个gate,所有的目标共享多个expert,每个expert通常是数层规模比较小的全连接层。gate用来选择每个expert的信号占比。每个expert都有其擅长的预测方向,最后共同作用于上面的多个目标。

MMoE 具备以下两点主要优势:

  1. 相比较简单的stacking多模型融合,MMoE引入了shared bottom layer来加强参数共享。多个目标的模型可以联合训练,减小模型的参数规模,防止模型过拟合。从性能方面的考虑,可以节省训练和预测的计算量。
  2. 共享参数一定程度上限制了不同目标的特异性,预测的目标之间的相关性比较高,模型才会具备好结果,MMoE引入门结构作为不同任务之间学习的注意力引入。

 

3. MMoE原理

3.1 Mixture-of-Experts

在正式介绍MMoE之前,我们先看简单的share bottom,x为模型的输入,如上图a所示,shared-bottom网络(表示为函数f)位于底部,多个任务共用这一层。K个子任务分别对应一个tower Network(表示为,如图tower A),每个子任务的输出为

MoE在此基础上引入了one-gate和多个Expert网络,其核心思想是将shared-bottom网络中的函数f替换成MoE层,如下所示:

其中fi(x),i=1,2,....n 是n个expert network(expert network可认为是一个神经网络),具体来说g产生n个experts上的概率分布,g是组合experts结果的gating network,最终的输出是所有experts的带权加和。显然,MoE可看做基于多个独立模型的集成方法。

3.2 Multi-gate Mixture-of-Experts

文章提出的模型(简称MMoE)目的就是相对于shared-bottom结构不明显增加模型参数的要求下捕捉任务的不同,形式化表达为:

其中gk输入就是input feature,输出是所有experts上的权重。

一方面,因为gating networks通常是轻量级的,而且expert networks是所有任务共用,所以相对于论文中提到的一些baseline方法在计算量和参数量上具有优势。另一方面,相对于所有任务公共一个门控网络(One-gate MoE model,如上图b),这里MMoE(上图c)中每个任务使用单独的gating networks。每个任务的gating networks通过最终输出权重不同实现对experts的选择性利用。不同任务的gating networks可以学习到不同的组合experts的模式,因此模型考虑到了捕捉到任务的相关性和区别

 

4. 总结

  1. 可以将每一个gate认为是weighted sum pooling操作。如果我们选择将gate换成max操作。x为输入,g(x)中分量最大值对应的expert被唯一选中,向上传递信号。如果g(x)与input无关,则模型退化成多个独立的NN模型stacking,这样就便于我们更方便理解模型的进化关系。 
  2. 此处MMoE是将MoE作为一个基本的组成单元,横向堆叠。也可以进行纵向堆叠,将上个MMoE的输出作为下一个输入。
  3. 如果任务相关度非常高,则OMoE和MMoE的效果近似,但是如果任务相关度很低,则OMoE的效果相对于MMoE明显下降,说明MMoE中的multi-gate的结构对于任务差异带来的冲突有一定的缓解作用。
  4. gate的softmax值可以反映不同expert和各个目标之间的关系,可以看到不同的expert确实在不同的任务中的重要性不同。但是这种expert和task的对应关系是训练获得的,如何加入expert和task之间存在的先验知识(强相关)。任务和expert权值参数初始化预引入,或者直接修改softmax函数,让占比大的更大。
  5. 是否需要对expert进行拆分,如FFM将特征分成Field;或者按照结构分expert,或者task specific expert + common expert

 

5. 代码实现

利用tensorflow实现了MMoElayer,整体的代码可以参考https://github.com/hxyue/hub-recsys/blob/master/Deep/MMOE/mmoe.py

import tensorflow as tf
from tensorflow import tensordot, expand_dims
from tensorflow.keras import layers, Model, initializers, regularizers, activations, constraints, Input


from tensorflow.keras.backend import expand_dims,repeat_elements,sum

class MMoE(layers.Layer):
    """
    Multi-gate Mixture-of-Experts model.
    """

    def __init__(self,
                 units,
                 num_experts,
                 num_tasks,
                 use_expert_bias=True,
                 use_gate_bias=True,
                 expert_activation='relu',
                 gate_activation='softmax',
                 expert_bias_initializer='zeros',
                 gate_bias_initializer='zeros',
                 expert_bias_regularizer=None,
                 gate_bias_regularizer=None,
                 expert_bias_constraint=None,
                 gate_bias_constraint=None,
                 expert_kernel_initializer='VarianceScaling',
                 gate_kernel_initializer='VarianceScaling',
                 expert_kernel_regularizer=None,
                 gate_kernel_regularizer=None,
                 expert_kernel_constraint=None,
                 gate_kernel_constraint=None,
                 activity_regularizer=None,
                 **kwargs):
        """
         Method for instantiating MMoE layer.
        :param units: Number of hidden units
        :param num_experts: Number of experts
        :param num_tasks: Number of tasks
        :param use_expert_bias: Boolean to indicate the usage of bias in the expert weights
        :param use_gate_bias: Boolean to indicate the usage of bias in the gate weights
        :param expert_activation: Activation function of the expert weights
        :param gate_activation: Activation function of the gate weights
        :param expert_bias_initializer: Initializer for the expert bias
        :param gate_bias_initializer: Initializer for the gate bias
        :param expert_bias_regularizer: Regularizer for the expert bias
        :param gate_bias_regularizer: Regularizer for the gate bias
        :param expert_bias_constraint: Constraint for the expert bias
        :param gate_bias_constraint: Constraint for the gate bias
        :param expert_kernel_initializer: Initializer for the expert weights
        :param gate_kernel_initializer: Initializer for the gate weights
        :param expert_kernel_regularizer: Regularizer for the expert weights
        :param gate_kernel_regularizer: Regularizer for the gate weights
        :param expert_kernel_constraint: Constraint for the expert weights
        :param gate_kernel_constraint: Constraint for the gate weights
        :param activity_regularizer: Regularizer for the activity
        :param kwargs: Additional keyword arguments for the Layer class
        """
        super(MMoE, self).__init__(**kwargs)

        # Hidden nodes parameter
        self.units = units
        self.num_experts = num_experts
        self.num_tasks = num_tasks

        # Weight parameter
        self.expert_kernels = None
        self.gate_kernels = None
        self.expert_kernel_initializer = initializers.get(expert_kernel_initializer)
        self.gate_kernel_initializer = initializers.get(gate_kernel_initializer)
        self.expert_kernel_regularizer = regularizers.get(expert_kernel_regularizer)
        self.gate_kernel_regularizer = regularizers.get(gate_kernel_regularizer)
        self.expert_kernel_constraint = constraints.get(expert_kernel_constraint)
        self.gate_kernel_constraint = constraints.get(gate_kernel_constraint)

        # Activation parameter
        #self.expert_activation = activations.get(expert_activation)
        self.expert_activation = expert_activation
        self.gate_activation = gate_activation

        # Bias parameter
        self.expert_bias = None
        self.gate_bias = None
        self.use_expert_bias = use_expert_bias
        self.use_gate_bias = use_gate_bias
        self.expert_bias_initializer = initializers.get(expert_bias_initializer)
        self.gate_bias_initializer = initializers.get(gate_bias_initializer)
        self.expert_bias_regularizer = regularizers.get(expert_bias_regularizer)
        self.gate_bias_regularizer = regularizers.get(gate_bias_regularizer)
        self.expert_bias_constraint = constraints.get(expert_bias_constraint)
        self.gate_bias_constraint = constraints.get(gate_bias_constraint)

        # Activity parameter
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.expert_layers = []
        self.gate_layers = []
        for i in range(self.num_experts):
            self.expert_layers.append(layers.Dense(self.units, activation=self.expert_activation,
                                                   use_bias=self.use_expert_bias,
                                                   kernel_initializer=self.expert_kernel_initializer,
                                                   bias_initializer=self.expert_bias_initializer,
                                                   kernel_regularizer=self.expert_kernel_regularizer,
                                                   bias_regularizer=self.expert_bias_regularizer,
                                                   activity_regularizer=None,
                                                   kernel_constraint=self.expert_kernel_constraint,
                                                   bias_constraint=self.expert_bias_constraint))
        for i in range(self.num_tasks):
            self.gate_layers.append(layers.Dense(self.num_experts, activation=self.gate_activation,
                                                 use_bias=self.use_gate_bias,
                                                 kernel_initializer=self.gate_kernel_initializer,
                                                 bias_initializer=self.gate_bias_initializer,
                                                 kernel_regularizer=self.gate_kernel_regularizer,
                                                 bias_regularizer=self.gate_bias_regularizer, activity_regularizer=None,
                                                 kernel_constraint=self.gate_kernel_constraint,
                                                 bias_constraint=self.gate_bias_constraint))

    def call(self, inputs):
        """
        Method for the forward function of the layer.
        :param inputs: Input tensor
        :param kwargs: Additional keyword arguments for the base method
        :return: A tensor
        """
        #assert input_shape is not None and len(input_shape) >= 2

        expert_outputs, gate_outputs, final_outputs = [], [], []
        for expert_layer in self.expert_layers:
            expert_output = expand_dims(expert_layer(inputs), axis=2)
            expert_outputs.append(expert_output)
        expert_outputs = tf.concat(expert_outputs,2)

        for gate_layer in self.gate_layers:
            gate_outputs.append(gate_layer(inputs))

        for gate_output in gate_outputs:
            expanded_gate_output = expand_dims(gate_output, axis=1)
            weighted_expert_output = expert_outputs * repeat_elements(expanded_gate_output, self.units, axis=1)
            final_outputs.append(sum(weighted_expert_output, axis=2))
        # 返回的矩阵维度 num_tasks * batch * units
        return final_outputs

 

  • 4
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值