iForest的算法原理和详解

"An outlier is an observation which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism."

异常检测 (anomaly detection),或者又被称为“离群点检测” (outlier detection),是机器学习研究领域中跟现实紧密联系、有广泛应用需求的一类问题。但是,什么是异常,并没有标准答案,通常因具体应用场景而异。

通常我们定义“异常”的两个标准或者说假设:

  1. 异常数据跟样本中大多数数据不太一样。
  2. 异常数据在整体数据样本中占比比较小。

对于异常检测而言,最直接的做法是利用各种统计的、距离的、密度的量化指标去描述数据样本跟其他样本的疏离程度(详见异常检测概论)。而 Isolation Forest (Liu et al. 2011) 的想法要巧妙一些,它尝试直接去刻画数据的“疏离”(isolation)程度,而不借助其他量化指标。Isolation Forest 因为简单、高效,在学术界和工业界都有着不错的名声。

算法介绍

我们先用一个简单的例子来说明 Isolation Forest 的基本想法。假设现有一组数据(如下图所示),我们要对这组数据进行随机切分,希望可以把点“星”区分出来。具体的,确定一个维度的特征,并在最大值和最小值之间随机选择一个值 x ,然后按照小于 x 和 大于等于x 可以把数据分成左右两组。然后再随机的按某个特征维度的取值把数据进行细分,重复上述步骤,直到无法细分,直到数据不可再分。直观上,异常数据由于跟其他数据点较为疏离,可能需要较少几次切分就可以将它们单独划分出来,而正常数据恰恰相反。这正是 Isolation Forest(IForest)的核心概念。

Isolation an outlier

模型训练

iForest (Isolation Forest)孤立森林 是一个基于Ensemble的快速异常检测方法,具有线性时间复杂度和高精准度。IF采用二叉树去对数据进行切分,数据点在二叉树中所处的深度反应了该条数据的“疏离”程度。整个算法大致可以分为两步:iForest属于Non-parametric和unsupervised的方法,即不用定义数学模型也不需要有标记的训练。怎么来切这个数据空间是iForest的设计核心思想,本文仅介绍最基本的方法。由于切割是随机的,所以需要用ensemble的方法来得到一个收敛值(蒙特卡洛方法),即反复从头开始切,然后平均每次切的结果。iForest 由t个iTree(Isolation Tree)孤立树 组成,每个iTree是一个二叉树结构,其实现步骤如下:

训练:构建一棵 iTree 时,先从全量数据中抽取一批样本,然后随机选择一个特征作为起始节点,并在该特征的最大值和最小值之间随机选择一个值,将样本中小于该取值的数据划到左分支,大于等于该取值的划到右分支。然后,在左右两个分支数据中,重复上述步骤,直到满足如下条件:

  1. 数据不可再分,即:只包含一条数据,或者全部数据相同。
  2. 二叉树达到限定的最大深度。

模型预测

计算数据 x 的异常分值时,先要估算它在每棵 iTree 中的路径长度(也可以叫深度)。具体的,先沿着一棵 iTree,从根节点开始按不同特征的取值从上往下,直到到达某叶子节点。假设 iTree 的训练样本中同样落在 x 所在叶子节点的样本数为 T.size ,则数据 x 在这棵 iTree 上的路径长度 h(x) ,可以用下面这个公式计算:

公式中,e 表示数据 x 从 iTree 的根节点到叶节点过程中经过的边的数目,C(T.size) 可以认为是一个修正值,它表示在一棵用 T.size 条样本数据构建的二叉树的平均路径长度。一般的,C(n) 的计算公式如下:

其中,H(n-1) 可用 ln(n-1)+0.5772156649 估算,这里的常数是欧拉常数。数据 x 最终的异常分值 Score(x) 综合了多棵 iTree 的结果:

公式中,E(h(x)) 表示数据 x 在多棵 iTree 的路径长度的均值,$\psi$ 表示单棵 iTree 的训练样本的样本数,$C(\psi)$ 表示用 $\psi$ 条数据构建的二叉树的平均路径长度,它在这里主要用来做归一化。

从异常分值的公式看,如果数据 x 在多棵 iTree 中的平均路径长度越短,得分越接近 1,表明数据 x 越异常;如果数据 x 在多棵 iTree 中的平均路径长度越长,得分越接近 0,表示数据 x 越正常;如果数据 x 在多棵 iTree 中的平均路径长度接近整体均值,则打分会在 0.5 附近。

个人见解

1. iForest具有线性时间复杂度。因为是ensemble的方法,所以可以用在含有海量数据的数据集上面。通常树的数量越多,算法越稳定。由于每棵树都是互相独立生成的,因此可以部署在大规模分布式系统上来加速运算。

2. iForest不适用于特别高维的数据。由于每次切数据空间都是随机选取一个维度,建完树后仍然有大量的维度信息没有被使用,导致算法可靠性降低。高维空间还可能存在大量噪音维度或无关维度(irrelevant attributes),影响树的构建。对这类数据,建议使用子空间异常检测(Subspace Anomaly Detection)技术。此外,切割平面默认是axis-parallel的,也可以随机生成各种角度的切割平面,详见“On Detecting Clustered Anomalies Using SCiForest”。

3. iForest仅对Global Anomaly 敏感,即全局稀疏点敏感,不擅长处理局部的相对稀疏点 (Local Anomaly)。目前已有改进方法发表于PAKDD,详见“Improving iForest with Relative Mass”。

4. iForest推动了重心估计(Mass Estimation)理论发展,目前在分类聚类和异常检测中都取得显著效果,发表于各大顶级数据挖掘会议和期刊(如SIGKDD,ICDM,ECML)。

Isolation Forest 是无监督的异常检测算法,在实际应用时,并不需要黑白标签。需要注意的是:(1)如果训练样本中异常样本的比例比较高,违背了先前提到的异常检测的基本假设,可能最终的效果会受影响;(2)异常检测跟具体的应用场景紧密相关,算法检测出的“异常”不一定是我们实际想要的。比如,在识别虚假交易时,异常的交易未必就是虚假的交易。所以,在特征选择时,可能需要过滤不太相关的特征,以免识别出一些不太相关的“异常”。

相关代码


 

  • 6
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 使用Python来写拓展iForest,可以使用Scikit-Learn库中的IsolationForest类,这是一个用来检测异常值的机器学习算法。可以使用这个类训练一个模型来做异常值检测,并调整参数以获得更好的性能。 ### 回答2: 使用Python编写extend iforest可以通过以下步骤完成。 首先,我们需要导入所需的Python库,如NumPy、Pandas和Scikit-learn等,以便进行数据处理和模型构建。 接下来,我们可以创建一个名为ExtendIForest的类,该类继承自Scikit-learn库中的BaseEstimator和TransformerMixin类。这两个类提供了一些基础的方法和属性,使我们的类能够符合Scikit-learn的Transformer接口。 在ExtendIForest类中,我们可以定义fit()和transform()方法来训练和应用模型。 在fit()方法中,我们可以实现ExtendIForest算法的训练过程。这个过程包括调用Scikit-learn库中的IsolationForest类来拟合数据,获得基本iForest模型。然后,我们可以进一步修改这个基本模型,使其变为ExtendIForest。具体修改的方式可以根据算法论文提供的扩展iforest的方法来实现。 在transform()方法中,我们可以使用训练好的ExtendIForest模型来对新的数据进行异常值标记。这个过程可以与IsolationForest中的predict()方法类似,但可能需要根据ExtendIForest算法论文提供的扩展方法进行一些调整。 最后,我们可以在ExtendIForest类的构造函数中设置需要的参数,如样本量、扩展方法的参数等。 通过以上步骤,我们就可以使用Python编写ExtendIForest的基本框架。具体的算法细节和实现方式可以根据你所选择使用的ExtendIForest算法来进一步调整和完善。 ### 回答3: 如果要用Python编写extend iforest,首先需要了解iforest机器学习算法的基本原理和实现方式。iforest是一种集成学习方法,它通过构建一棵或多棵孤立的决策树来识别异常数据。 为了扩展iforest算法,可以考虑以下几个方面: 1. 数据准备:根据iforest原理,需要将数据转换为合适的格式,通常为二维数组,其中每一行代表一个样本,每一列代表一个特征。确保数据集中不存在缺失值。 2. 树的构建:使用Python编写函数来构建决策树。可以采用递归的方式,在每个节点上选择一个适当的分割特征和阈值,将样本分为左子树和右子树。 3. 孤立树的集成:可以构建多棵孤立树,并将它们组合成一个模型。可以采用循环的方式,每次构建一棵新的孤立树,并将其添加到模型中。 4. 异常值判断:在使用模型进行异常值判断时,需要通过计算样本在每棵树上的路径长度。路径长度越短的样本越有可能是异常值。 5. 参数调整:通过调整一些参数,比如树的个数、分割特征的选择策略等,可以进一步改进模型的性能。可以使用交叉验证等方法来寻找最佳参数。 最后,可以将以上的代码组织成一个Python包或者类,使其更方便地在其他程序中引用和使用。通过这样的方式,我们就可以用Python来实现extend iforest算法,用于异常值检测和数据分析等任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值