张宇1000题高等数学 第二章 数列极限

目录

C C C

3.设当 a ⩽ x ⩽ b a\leqslant x\leqslant b axb时, a ⩽ f ( x ) ⩽ b a\leqslant f(x)\leqslant b af(x)b,并设存在常数 k k k 0 ⩽ k < 1 0\leqslant k<1 0k<1,对于 [ a , b ] [a,b] [a,b]上的任意两点 x 1 x_1 x1 x 2 x_2 x2,都有 ∣ f ( x 1 ) − f ( x 2 ) ∣ ⩽ k ∣ x 1 − x 2 ∣ |f(x_1)-f(x_2)|\leqslant k|x_1-x_2| f(x1)f(x2)kx1x2。证明:

(1)存在唯一的 ξ ∈ [ a , b ] \xi\in[a,b] ξ[a,b]使 f ( ξ ) = ξ f(\xi)=\xi f(ξ)=ξ

  由 ∣ f ( x 1 ) − f ( x 2 ) ∣ ⩽ k ∣ x 1 − x 2 ∣ |f(x_1)-f(x_2)|\leqslant k|x_1-x_2| f(x1)f(x2)kx1x2,对于任意固定的 x 0 ∈ [ a , b ] x_0\in[a,b] x0[a,b]作为其中的 x 2 x_2 x2,并将 x 1 x_1 x1记为 x x x。于是有 ∣ f ( x ) − f ( x 0 ) ∣ ⩽ k ∣ x − x 0 ∣ |f(x)-f(x_0)|\leqslant k|x-x_0| f(x)f(x0)kxx0,当 x → x 0 x\to x_0 xx0时, ∣ f ( x ) − f ( x 0 ) ∣ → 0 |f(x)-f(x_0)|\to0 f(x)f(x0)0,于是有 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0}f(x)=f(x_0) xx0limf(x)=f(x0),可知 f ( x ) f(x) f(x) x 0 ∈ [ a , b ] x_0\in[a,b] x0[a,b]处连续,由 x 0 x_0 x0的任意性,知 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续。
  令 φ ( x ) = f ( x ) − x \varphi(x)=f(x)-x φ(x)=f(x)x,则 φ ( a ) = f ( a ) − a ⩾ 0 , φ ( b ) = f ( b ) − b ⩽ 0 \varphi(a)=f(a)-a\geqslant0,\varphi(b)=f(b)-b\leqslant0 φ(a)=f(a)a0,φ(b)=f(b)b0
  上述两不等式若至少有一个等号成立,例如 φ ( a ) = 0 \varphi(a)=0 φ(a)=0,则取 ξ = a ∈ [ a , b ] \xi=a\in[a,b] ξ=a[a,b],有 φ ( ξ ) = f ( ξ ) − ξ = 0 \varphi(\xi)=f(\xi)-\xi=0 φ(ξ)=f(ξ)ξ=0
  若上述两不等式中无一个等号成立,即 φ ( a ) = f ( a ) − a > 0 , φ ( b ) = f ( b ) − b < 0 \varphi(a)=f(a)-a>0,\varphi(b)=f(b)-b<0 φ(a)=f(a)a>0,φ(b)=f(b)b<0。于是由连续函数介值定理知,存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使得 φ ( ξ ) = f ( ξ ) − ξ = 0 \varphi(\xi)=f(\xi)-\xi=0 φ(ξ)=f(ξ)ξ=0
  再证唯一性,用反证法证明。
  设存在 η ∈ [ a , b ] , η ≠ ξ \eta\in[a,b],\eta\ne\xi η[a,b],η=ξ,使得 φ ( η ) = f ( η ) − η = 0 \varphi(\eta)=f(\eta)-\eta=0 φ(η)=f(η)η=0。于是 f ( η ) − f ( ξ ) = η − ξ f(\eta)-f(\xi)=\eta-\xi f(η)f(ξ)=ηξ,则 ∣ η − ξ ∣ = ∣ f ( η ) − f ( ξ ) ∣ ⩽ k ∣ η − ξ ∣ |\eta-\xi|=|f(\eta)-f(\xi)|\leqslant k|\eta-\xi| ηξ=f(η)f(ξ)kηξ,即 ( 1 − k ) ∣ η − ξ ∣ ⩽ 0 (1-k)|\eta-\xi|\leqslant0 (1k)ηξ0。但因 1 − k > 0 , ∣ η − ξ ∣ > 0 1-k>0,|\eta-\xi|>0 1k>0,ηξ>0,导致矛盾,所以 η = ξ \eta=\xi η=ξ,证明了唯一性。(这道题主要利用了构造函数求解

(2)对于任意给定的 x 1 ∈ [ a , b ] x_1\in[a,b] x1[a,b],定义 x n + 1 = f ( x n ) , n = 1 , 2 , ⋯ x_{n+1}=f(x_n),n=1,2,\cdots xn+1=f(xn),n=1,2,,则 lim ⁡ n → ∞ x n \lim\limits_{n\to\infty}x_n nlimxn存在,且 lim ⁡ n → ∞ x n = ξ \lim\limits_{n\to\infty}x_n=\xi nlimxn=ξ

  为证 lim ⁡ n → ∞ x n = ξ \lim\limits_{n\to\infty}x_n=\xi nlimxn=ξ,考虑 ∣ x n − ξ ∣ → 0 |x_n-\xi|\to0 xnξ0,其中 x 1 x_1 x1 ξ \xi ξ都是确定的值。
  所以当 n → ∞ n\to\infty n时, ∣ x n − ξ ∣ → 0 |x_n-\xi|\to0 xnξ0,从而证明了存在 lim ⁡ n → ∞ x n \lim\limits_{n\to\infty}x_n nlimxn,且 lim ⁡ n → ∞ x n = ξ \lim\limits_{n\to\infty}x_n=\xi nlimxn=ξ。(这道题主要利用了极限定义求解

4.设 f ( x ) f(x) f(x) [ 0 , + ∞ ) [0,+\infty) [0,+)上连续,满足 0 ⩽ f ( x ) ⩽ x , x ∈ [ 0 , + ∞ ) 0\leqslant f(x)\leqslant x,x\in[0,+\infty) 0f(x)x,x[0,+),设 a 1 ⩾ 0 , a n + 1 = f ( a n ) ( n = 1 , 2 , ⋯   ) a_1\geqslant0,a_{n+1}=f(a_n)(n=1,2,\cdots) a10,an+1=f(an)(n=1,2,),证明:

(1) { a n } \{a_n\} {an}为收敛数列;

  由于 0 ⩽ f ( x ) ⩽ x , x ∈ [ 0 , + ∞ ) 0\leqslant f(x)\leqslant x,x\in[0,+\infty) 0f(x)x,x[0,+),因此有 a n + 1 − a n = f ( a n ) − a n ⩽ 0 ( n = 1 , 2 , ⋯   ) a_{n+1}-a_n=f(a_n)-a_n\leqslant0(n=1,2,\cdots) an+1an=f(an)an0(n=1,2,),即 { a n } \{a_n\} {an}为单调递减数列。又因 a 1 ⩾ 0 , f ( x ) ⩾ 0 , a n + 1 = f ( a n ) a_1\geqslant0,f(x)\geqslant0,a_{n+1}=f(a_n) a10,f(x)0,an+1=f(an),所以 a n ⩾ 0 ( n = 1 , 2 , ⋯   ) a_n\geqslant0(n=1,2,\cdots) an0(n=1,2,)
  综上可知 { a n } \{a_n\} {an}单调递减且有下界,故必为收敛数列。

(2)设 lim ⁡ n → ∞ a n = t \lim\limits_{n\to\infty}a_n=t nliman=t,则有 f ( t ) = t f(t)=t f(t)=t

  因 lim ⁡ n → ∞ a n = t \lim\limits_{n\to\infty}a_n=t nliman=t f ( x ) f(x) f(x) [ 0 , + ∞ ) [0,+\infty) [0,+)上连续,且 t ∈ [ 0 , + ∞ ) t\in[0,+\infty) t[0,+),故有 t = lim ⁡ n → ∞ a n + 1 = lim ⁡ n → ∞ f ( a n ) = f ( lim ⁡ n → ∞ a n ) = f ( t ) t=\lim\limits_{n\to\infty}a_{n+1}=\lim\limits_{n\to\infty}f(a_n)=f(\lim\limits_{n\to\infty}a_n)=f(t) t=nliman+1=nlimf(an)=f(nliman)=f(t)

(3)若条件改为 0 ⩽ f ( x ) < x , x ∈ [ 0 , + ∞ ) 0\leqslant f(x)<x,x\in[0,+\infty) 0f(x)<x,x[0,+),则(2)中的 t = 0 t=0 t=0

  由 a n ⩾ 0 a_n\geqslant0 an0 lim ⁡ n → ∞ a n = t \lim\limits_{n\to\infty}a_n=t nliman=t,知 t ⩾ 0 t\geqslant0 t0,若 t ≠ 0 t\ne0 t=0,则 t ∈ ( 0 , + ∞ ) t\in(0,+\infty) t(0,+),且 f ( t ) < t f(t)<t f(t)<t,但由(2)知 f ( t ) = t f(t)=t f(t)=t,矛盾,所以 t = 0 t=0 t=0。(这道题主要利用了反证法求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值