【电机仿真】系列文章目录
前言
永磁同步电机(PMSM)常用于机械电子控制,其产生的电磁转矩与转速常作为输入,来满足被控系统的性能要求,在此过程中,除被控系统需要控制算法外,PMSM同样需要针对系统需求选择不同的控制算法。当然在此之前需要明确PMSM的数学模型,以便之后的电机控制算法的实现。故本文主要针对电机模型展开,同时在内容中囊括了对直线电机的类比。
PMSM工作原理
PMSM的工作原理本质上是作为通电导体的定子,施加交流电产生交变的磁场,用以驱动有磁体构成的动子,该过程中PMSM作为电动机。当永磁同步电机作为发电机使用时,动力源带动转子同样产生交变磁场,并在定子上产生感生电动势。
电动机与发电机作为电机两种工作模式,常用电磁转矩与转速的速度来判断,同时两者即便在能量流动方向上相反,但是实际运动的部件却均为动子,承载电能的部件均为定子。
PMSM物理模型
如图2所示的永磁同步电机物理模型,其中包含了三相静止坐标系,两相静止坐标系,两相旋转坐标系。
图2中,ABC为三相静止坐标系,其中 u A 、 u B 、 u C {u_A}、{u_B}、{u_C} uA、uB、uC为电枢电压, i A 、 i B 、 i C {i_A}、{i_B}、{i_C} iA、iB、iC为电枢电流; α 、 β \alpha、 \beta α、β为两相静止坐标系,其中假定A轴与 α \alpha α轴重合;dq为两相旋转坐标系,其中θ为d轴与A轴的夹角。
PMSM模型
通常PMSM模型包含了磁链方程、电压方程、转矩方程和运动方程组成,在不同坐标系下,其表现形式不同。
PMSM三相静止坐标系下的数学模型
磁链方程:
{ φ A = L A A i A + M A B i B + M A C i C + φ f cos θ φ B = M B A i A + L B B i B + M B C i C + φ f cos ( θ − 2 π 3 ) φ C = M C A i A + M C B i B + L C C i C + φ f cos ( θ + 2 π 3 ) (1) \left\{ \begin{array}{l} {\varphi _A} = {L_{AA}}{i_A} + {M_{AB}}{i_B} + {M_{AC}}{i_C} + {\varphi _f}\cos \theta \\ {\varphi _B} = {M_{BA}}{i_A} + {L_{BB}}{i_B} + {M_{BC}}{i_C} + {\varphi _f}\cos \left( {\theta - \frac{
{2\pi }}{3}} \right)\\ {\varphi _C} = {M_{CA}}{i_A} + {M_{CB}}{i_B} + {L_{CC}}{i_C} + {\varphi _f}\cos \left( {\theta + \frac{
{2\pi }}{3}} \right) \end{array} \right.\tag{1} ⎩
⎨
⎧φA=LAAiA+MABiB+MACiC+φfcosθφB=MBAiA+LBBiB+MBCiC+φfcos(θ−32π)φC=MCAiA+MCBiB+LCCiC+φfcos(θ+32π)(1)
上式中, L x x {L_{xx}} Lxx为定子绕组自感, M x x {M_{xx}} Mxx为定子绕组互感, φ x {\varphi _x} φx为三相磁链, φ f {\varphi _f} φf为永磁磁链。
电压方程:
{ u A = R s i A + d φ A d t u B = R s i B + d φ B d t u C = R s i C + d φ C d t (2) \left\{ \begin{array}{l} {u_A} = {R_s}{i_A} + \frac{
{d{\varphi _A}}}{
{dt}}\\ {u_B} = {R_s}{i_B} + \frac{
{d{\varphi _B}}}{
{dt}}\\ {u_C} = {R_s}{i_C} + \frac{
{d{\varphi _C}}}{
{dt}} \end{array} \right.\tag{2} ⎩