前言
在众多电机控制方法中,矢量控制因其实用性与数学意义而广泛应用,其中根据应用转速范围为中低速区间和高速区间两部分,前者主要包括 i d = 0 {i_d}=0 id=0控制和最大转矩电流比控制策略(MTPA),后者主要包括弱磁控制策略(FW)。本文将从 i d = 0 {i_d}=0 id=0控制着手,开始阐述算法原理与仿真。
一、 i d = 0 {i_d}=0 id=0控制原理
【电机仿真】永磁同步电机模型一文中通过Park与Clark变换,将电机模型由三相静止坐标系转换至两相旋转正交坐标系下,在该坐标系中时变的磁链与电压方程均等效为常量,转矩方程更是变换为:
T
e
=
1.5
n
p
[
φ
f
i
q
+
(
L
d
−
L
q
)
i
d
i
q
]
(1)
{T_e} = 1.5{n_p}\left[ {{\varphi _f}{i_q} + \left( {{L_d} - {L_q}} \right){i_d}{i_q}} \right]\tag{1}
Te=1.5np[φfiq+(Ld−Lq)idiq](1)
矢量控制的目标是控制电机输出目标转矩或转速,由式1可得,
T
e
{T_e}
Te仅由与
i
d
、
i
q
{i_d}、{i_q}
id、iq相关,方便起见,在电机参数确定的前提下,此时要求两常数
L
d
=
L
q
{L_d} = {L_q}
Ld=Lq,式1可化为:
T
e
=
1.5
n
p
φ
f
i
q
(2)
{T_e} = 1.5{n_p}{\varphi _f}{i_q}\tag{2}
Te=1.5npφfiq(2)
此时
T
e
{T_e}
Te与
i
q
{i_q}
iq成正比,通过保证
i
d
=
0
{i_d}=0
id=0,控制
i
q
{i_q}
iq即可实现针对
T
e
{T_e}
Te的控制。
二、 i d = 0 {i_d}=0 id=0算法仿真
i
d
=
0
{i_d}=0
id=0算法框图如图1所示,首先需要测量三相电流信号,通过Park、Clark变换,将其转换至DQ轴上,其次通过转速外环电流内环,借助PI控制器按照期望转速给出相应的
U
d
、
U
q
{U_d}、{U_q}
Ud、Uq,再次通过反Park变换将其转换为
U
α
、
U
β
{U_\alpha }、{U_\beta }
Uα、Uβ,最后通过SVPWM算法将其变为逆变器开关信号,即可实现整个算法流程。
Matlab\simulink仿真如下:
上图中所使用的仿真参数如下表所示:
名称 | 数值 |
---|---|
期望转速 ω ( r a d / s ) \omega \left( {rad/s} \right) ω(rad/s) | 50 |
负载转矩 T e ( N / m ) {T_e}\left( {N/m} \right) Te(N/m) | 0.5 |
定子电阻 R s ( Ω ) {R_s}\left( \Omega \right) Rs(Ω) | 0.0485 |
电枢电感 L s ( H ) {L_s}\left( H \right) Ls(H) | 0.000395 |
磁链 φ f ( W b ) {\varphi _f}\left( {Wb} \right) φf(Wb) | 0.1194 |
转动惯量 J ( K g ⋅ m 2 ) J\left( {Kg \cdot {m^2}} \right) J(Kg⋅m2) | 0.0027 |
摩擦系数 B ( N s / m ) B\left( {Ns/m} \right) B(Ns/m) | 0.065 |
极对数 P P P | 1 |
直流电压 V D C ( V ) {V_{DC}}\left( V \right) VDC(V) | 100 |
仿真结果如下:
相应仿真资源:矢量控制之一:id=0控制
总结
本文介绍了矢量控制中最经典的算法之一—— i d = 0 {i_d}=0 id=0算法,并针对性的介绍了其原理与仿真。
参考文献
- 陈诚电气相关视频
- 王耕. 面向新能源汽车的电机矢量控制策略研究[D].湖南大学,2021.
- 乔峰. 永磁同步电机驱动系统几类自适应控制策略研究[D].山东大学,2018.