【论文推导】同步boost变换器输入电压控制小信号模型推导

问题描述

使用MPPT算法跟踪MPP点时,实际控制的是与发电源相接的DC-DC变换器,其常见的应用场景是固定输入电压,调整输出电压,然而在MPPT算法应用中,需要跟踪的是输入端的电压,即固定输出电压,调整输入电压。本文主要针对同步BOOST变换器,求解占空比D到输入直流电压Vdc的传递函数,其中主要考虑了滤波电容、电感将其内阻。

同步Boost变换器拓扑:

在这里插入图片描述

图1.同步Boost变换器拓扑

当M1闭合M2断开,此时直流功率向电感充电,当M1断开M2闭合,此时直流功率同电感储存的能量一同向负载供电。

状态空间方程:

第一步,建立电路状态空间方程
根据KVL建立该电路的状态空间方程:
当M1闭合M2断开时,
{ I D C = C D C d V C D C d t + I L V D C = I L R L + L d I L d t V D C = V C D C + R C D C d V C D C d t (1) \left\{ \begin{array}{l} {I_{DC}} = {C_{DC}}\frac{{d{V_{{C_{DC}}}}}}{{dt}} + {I_L}\\ {V_{DC}} = {I_L}{R_L} + L\frac{{d{I_L}}}{{dt}}\\ {V_{DC}} = {V_{{C_{DC}}}} + {R_{{C_{DC}}}}\frac{{d{V_{{C_{DC}}}}}}{{dt}} \end{array} \right.\tag{1} IDC=CDCdtdVCDC+ILVDC=ILRL+LdtdILVDC=VCDC+RCDCdtdVCDC(1)

当M1断开M2闭合时,
{ I D C = C D C d V C D C d t + I L V D C = I L R L + L d I L d t − V l o a d V D C = V C D C + R C D C d V C D C d t (2) \left\{ \begin{array}{l} {I_{DC}} = {C_{DC}}\frac{{d{V_{{C_{DC}}}}}}{{dt}} + {I_L}\\ {V_{DC}} = {I_L}{R_L} + L\frac{{d{I_L}}}{{dt}} - {V_{load}}\\ {V_{DC}} = {V_{{C_{DC}}}} + {R_{{C_{DC}}}}\frac{{d{V_{{C_{DC}}}}}}{{dt}} \end{array} \right.\tag{2} IDC=CDCdtdVCDC+ILVDC=ILRL+LdtdILVloadVDC=VCDC+RCDCdtdVCDC(2)

将两个阶段的状态方程结合,
{ I D C = C D C d V C D C d t + I L V D C = D ( I L R L + L d I L d t ) + D ′ ( I L R L + L d I L d t − V l o a d ) V D C = V C D C + R C D C d V C D C d t (3) \left\{ \begin{array}{l} {I_{DC}} = {C_{DC}}\frac{{d{V_{{C_{DC}}}}}}{{dt}} + {I_L}\\ {V_{DC}} = D\left( {{I_L}{R_L} + L\frac{{d{I_L}}}{{dt}}} \right) + D'\left( {{I_L}{R_L} + L\frac{{d{I_L}}}{{dt}} - {V_{load}}} \right)\\ {V_{DC}} = {V_{{C_{DC}}}} + {R_{{C_{DC}}}}\frac{{d{V_{{C_{DC}}}}}}{{dt}} \end{array} \right.\tag{3} IDC=CDCdtdVCDC+ILVDC=D(ILRL+LdtdIL)+D(ILRL+LdtdILVload)VDC=VCDC+RCDCdtdVCDC(3)

第二步,分离扰动
{ I D C = i D C + i ^ D C V D C = v D C + v ^ D C I L = i L + i ^ L V C D C = v C D C + v ^ C D C V l o a d = v l o a d + v ^ l o a d D = d + d ^ D ′ = d − d ^ (4) \left\{ \begin{array}{l} {I_{DC}} = {i_{DC}} + {{\hat i}_{DC}}\\ {V_{DC}} = {v_{DC}} + {{\hat v}_{DC}}\\ {I_L} = {i_L} + {{\hat i}_L}\\ {V_{{C_{DC}}}} = {v_{{C_{DC}}}} + {{\hat v}_{{C_{DC}}}}\\ {V_{load}} = {v_{load}} + {{\hat v}_{load}}\\ D = d + \hat d\\ D' = d - \hat d \end{array} \right.\tag{4} IDC=iDC+i^DCVDC=vDC+v^DCIL=iL+i^LVCDC=vCDC+v^CDCVload=vload+v^loadD=d+d^D=dd^(4)

将式4代入式3中可得:
{ i D C + i ^ D C = C D C d ( v C D C + v ^ C D C ) d t + ( i L + i ^ L ) v D C + v ^ D C = ( d + d ^ ) [ ( i L + i ^ L ) R L + L d ( i L + i ^ L ) d t ] + ( d ′ + d ^ ) [ ( i L + i ^ L ) R L + L d ( i L + i ^ L ) d t − ( v l o a d + v ^ l o a d ) ] v D C + v ^ D C = v ^ C D C + R C D C d v ^ C D C d t (5) \left\{ \begin{array}{l} {i_{DC}} + {{\hat i}_{DC}} = {C_{DC}}\frac{{d\left( {{v_{{C_{DC}}}} + {{\hat v}_{{C_{DC}}}}} \right)}}{{dt}} + \left( {{i_L} + {{\hat i}_L}} \right)\\ {v_{DC}} + {{\hat v}_{DC}} = \left( {d + \hat d} \right)\left[ {\left( {{i_L} + {{\hat i}_L}} \right){R_L} + L\frac{{d\left( {{i_L} + {{\hat i}_L}} \right)}}{{dt}}} \right] + \left( {d' + \hat d} \right)\left[ {\left( {{i_L} + {{\hat i}_L}} \right){R_L} + L\frac{{d\left( {{i_L} + {{\hat i}_L}} \right)}}{{dt}} - \left( {{v_{load}} + {{\hat v}_{load}}} \right)} \right]\\ {v_{DC}} + {{\hat v}_{DC}} = {{\hat v}_{{C_{DC}}}} + {R_{{C_{DC}}}}\frac{{d{{\hat v}_{{C_{DC}}}}}}{{dt}} \end{array} \right.\tag{5} iDC+i^DC=CDCdtd(vCDC+v^CDC)+(iL+i^L)vDC+v^DC=(d+d^)[(iL+i^L)RL+Ldtd(iL+i^L)]+(d+d^)[(iL+i^L)RL+Ldtd(iL+i^L)(vload+v^load)]vDC+v^DC=v^CDC+RCDCdtdv^CDC(5)

将式5中的稳态信号分离出来,:
{ i D C = C D C d v C D C d t + i L v D C = d [ i L R L + L d i L d t ] + d ′ [ i L R L + L d i L d t − v l o a d ] v D C = v C D C + R C D C d v C D C d t (6) \left\{ \begin{array}{l} {i_{DC}} = {C_{DC}}\frac{{d{v_{{C_{DC}}}}}}{{dt}} + {i_L}\\ {v_{DC}} = d\left[ {{i_L}{R_L} + L\frac{{d{i_L}}}{{dt}}} \right] + d'\left[ {{i_L}{R_L} + L\frac{{d{i_L}}}{{dt}} - {v_{load}}} \right]\\ {v_{DC}} = {v_{{C_{DC}}}} + {R_{{C_{DC}}}}\frac{{d{v_{{C_{DC}}}}}}{{dt}} \end{array} \right.\tag{6} iDC=CDCdtdvCDC+iLvDC=d[iLRL+LdtdiL]+d[iLRL+LdtdiLvload]vDC=vCDC+RCDCdtdvCDC(6)
根据电感电压的伏秒平衡和电容电路的安秒平衡,可得静态工作点:
{ i D C = i L v D C = i L R L + d ′ v l o a d v D C = v C D C (7) \left\{ \begin{array}{l} {i_{DC}} = {i_L}\\ {v_{DC}} = {i_L}{R_L} + d'{v_{load}}\\ {v_{DC}} = {v_{{C_{DC}}}} \end{array} \right.\tag{7} iDC=iLvDC=iLRL+dvloadvDC=vCDC(7)
将式5中的小信号分离出来:
{ i ^ D C = C D C d v ^ C D C d t + i ^ L v ^ D C = ( d + d ^ ) ( i ^ L R L + L d i ^ L d t ) + ( d ′ + d ^ ) ( i ^ L R L + L d i ^ L d t − v ^ l o a d ) v ^ D C = v ^ C D C + R C D C d v ^ C D C d t (8) \left\{ \begin{array}{l} {{\hat i}_{DC}} = {C_{DC}}\frac{{d{{\hat v}_{{C_{DC}}}}}}{{dt}} + {{\hat i}_L}\\ {{\hat v}_{DC}} = \left( {d + \hat d} \right)\left( {{{\hat i}_L}{R_L} + L\frac{{d{{\hat i}_L}}}{{dt}}} \right) + \left( {d' + \hat d} \right)\left( {{{\hat i}_L}{R_L} + L\frac{{d{{\hat i}_L}}}{{dt}} - {{\hat v}_{load}}} \right)\\ {{\hat v}_{DC}} = {{\hat v}_{{C_{DC}}}} + {R_{{C_{DC}}}}\frac{{d{{\hat v}_{{C_{DC}}}}}}{{dt}} \end{array} \right.\tag{8} i^DC=CDCdtdv^CDC+i^Lv^DC=(d+d^)(i^LRL+Ldtdi^L)+(d+d^)(i^LRL+Ldtdi^Lv^load)v^DC=v^CDC+RCDCdtdv^CDC(8)
第三步,线性化
将两个小信号相乘的项忽略,式8可化为:
{ i ^ D C = C D C d v ^ C D C d t + i ^ L v ^ D C = i ^ L R L + L d i ^ L d t − d v ^ l o a d + d ^ v l o a d v ^ D C = v ^ C D C + R C D C C D C d v ^ C D C d t (9) \left\{ \begin{array}{l} {{\hat i}_{DC}} = {C_{DC}}\frac{{d{{\hat v}_{{C_{DC}}}}}}{{dt}} + {{\hat i}_L}\\ {{\hat v}_{DC}} = {{\hat i}_L}{R_L} + L\frac{{d{{\hat i}_L}}}{{dt}} - d{{\hat v}_{load}} + \hat d {v_{load}}\\ {{\hat v}_{DC}} = {{\hat v}_{{C_{DC}}}} + {R_{{C_{DC}}}}{C_{DC}}\frac{{d{{\hat v}_{{C_{DC}}}}}}{{dt}} \end{array} \right.\tag{9} i^DC=CDCdtdv^CDC+i^Lv^DC=i^LRL+Ldtdi^Ldv^load+d^vloadv^DC=v^CDC+RCDCCDCdtdv^CDC(9)

则此时就可以计算占空比D到输入直流电压Vdc的传递函数了,计算过程如下:
v ^ D C S R C D C C D C + 1 = v ^ C D C i ^ D C − S C D C S R C D C C D C + 1 v ^ D C = i ^ L v ^ D C = ( R L + S L ) ( i ^ D C − S C D C S R C D C C D C + 1 v ^ D C ) + d ^ v l o a d v ^ D C = ( R L + S L ) ( G I V − S C D C S R C D C C D C + 1 ) v ^ D C + d ^ v l o a d [ 1 − ( R L + S L ) ( G I V − S C D C S R C D C C D C + 1 ) ] v ^ D C = d ^ v l o a d (10) \begin{array}{l} \frac{{{{\hat v}_{DC}}}}{{S{R_{{C_{DC}}}}{C_{DC}} + 1}} = {{\hat v}_{{C_{DC}}}}\\ {{\hat i}_{DC}} - \frac{{S{C_{DC}}}}{{S{R_{{C_{DC}}}}{C_{DC}} + 1}}{{\hat v}_{DC}} = {{\hat i}_L}\\ {{\hat v}_{DC}} = \left( {{R_L} + SL} \right)\left( {{{\hat i}_{DC}} - \frac{{S{C_{DC}}}}{{S{R_{{C_{DC}}}}{C_{DC}} + 1}}{{\hat v}_{DC}}} \right) + \hat d {v_{load}}\\ {{\hat v}_{DC}} = \left( {{R_L} + SL} \right)\left( {{G_{IV}} - \frac{{S{C_{DC}}}}{{S{R_{{C_{DC}}}}{C_{DC}} + 1}}} \right){{\hat v}_{DC}} + \hat d {v_{load}}\\ \left[ {1 - \left( {{R_L} + SL} \right)\left( {{G_{IV}} - \frac{{S{C_{DC}}}}{{S{R_{{C_{DC}}}}{C_{DC}} + 1}}} \right)} \right]{{\hat v}_{DC}} = \hat d{v_{load}} \end{array}\tag{10} SRCDCCDC+1v^DC=v^CDCi^DCSRCDCCDC+1SCDCv^DC=i^Lv^DC=(RL+SL)(i^DCSRCDCCDC+1SCDCv^DC)+d^vloadv^DC=(RL+SL)(GIVSRCDCCDC+1SCDC)v^DC+d^vload[1(RL+SL)(GIVSRCDCCDC+1SCDC)]v^DC=d^vload(10)

传递函数如下;
v ^ D C d ^ ∣ v ^ l o a d = 0 = v l o a d 1 − ( R L + S L ) ( G I V − S C D C S R C D C C D C + 1 ) (11) {\left. {\frac{{{{\hat v}_{DC}}}}{{\hat d}}} \right|_{{{\hat v}_{load}} = 0}} = \frac{{{v_{load}}}}{{1 - \left( {{R_L} + SL} \right)\left( {{G_{IV}} - \frac{{S{C_{DC}}}}{{S{R_{{C_{DC}}}}{C_{DC}} + 1}}} \right)}}\tag{11} d^v^DC v^load=0=1(RL+SL)(GIVSRCDCCDC+1SCDC)vload(11)

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值