openCV编程基础16--图像梯度

功能:

1.一阶梯度与Soble算子

2.二阶梯度与拉普拉斯算子

3.图像通过卷积锐化图像

import cv2 as cv
import numpy as np


#图像梯度:索贝尔算子
def sobel_image(image):
    grad_x = cv.Sobel(image, cv.CV_32F, 1, 0)#x方向导数
    grad_y = cv.Sobel(image, cv.CV_32F, 0, 1)#y方向导数
    gradx = cv.convertScaleAbs(grad_x)
    grady = cv.convertScaleAbs(grad_y)
    cv.imshow("X_sob", gradx)#颜色变化在水平分层
    cv.imshow("Y_sob", grady)#颜色变化在垂直分层
    gradxy = cv.addWeighted(gradx, 0.5, grady, 0.5, 0)
    cv.imshow("xy_sob", gradxy)

#图像梯度:scharr算子:增强边缘
def scharr_image(image):
    grad_x = cv.Scharr(image, cv.CV_32F, 1, 0)#x方向导数
    grad_y = cv.Scharr(image, cv.CV_32F, 0, 1)#y方向导数
    gradx = cv.convertScaleAbs(grad_x)
    grady = cv.convertScaleAbs(grad_y)
    cv.imshow("X_sch", gradx)#颜色变化在水平分层
    cv.imshow("Y_sch", grady)#颜色变化在垂直分层
    gradxy = cv.addWeighted(gradx, 0.5, grady, 0.5, 0)
    cv.imshow("xy_sch", gradxy)

#拉普拉斯算子
def lapalian_image(image):
    dst = cv.Laplacian(image, cv.CV_32F)
    lpls = cv.convertScaleAbs(dst)
    cv.imshow("lpls", lpls)

#图像锐化
def custom_blur_demo(image):
    kernel = np.array(([0,-1,0],[-1,5,-1],[0,-1,0]),np.float32)
    dst = cv.filter2D(image,-1,kernel=kernel)
    cv.imshow('custom_blur_demo',dst)


src = cv.imread('F:001.jpg')
#cv.namedWindow('input_image', cv.WINDOW_AUTOSIZE)
cv.imshow("0", src)
sobel_image(src)
scharr_image(src)
lapalian_image(src)
custom_blur_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()

输出结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值