不平衡二分类训练数据处理

该文介绍了如何在Python中使用Pandas处理不平衡数据集的问题。通过上采样,增加少数类别的样本以平衡数据,以及下采样,减少多数类别的样本,来改善模型训练。这两种方法分别适用于数据集大小不同的情况,以优化训练成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先生成不平衡数据集

import pandas as pd
df = pd.DataFrame([0,0,0,0,0,0,0,0,0,1,1])
df.columns = ['label']
df.value_counts()

在这里插入图片描述

上采样方法,根据最多的数据集将少的数据集进行填充和打乱,数据集少的情况考虑,数据集太大会导致训练成本的提高

import warnings 
warnings.filterwarnings('ignore')

# 统计每个类别的样本数量
class_counts = newtotal_df['目标值'].value_counts()

# 取出样本数量最多的类别
max_class_count = class_counts.max()

# 对每个类别进行上采样
balanced_data = pd.concat([
    newtotal_df[newtotal_df['目标值'] == label].sample(max_class_count, replace=True)
    for label in class_counts.index
])

# 将数据打乱
balanced_data2 = balanced_data.sample(frac=1)

结果如下
在这里插入图片描述

下采样

根据最少的值进行的取样办法,数据集多的情况下考虑,太少不建议使用

import warnings 
warnings.filterwarnings('ignore')

# 统计每个类别的样本数量
class_counts = newtotal_df['目标值'].value_counts()

# 取出样本数量最少的类别
min_class_count = class_counts.min()

# 对每个类别进行上采样
balanced_data = pd.concat([
    newtotal_df[newtotal_df['目标值'] == label].sample(min_class_count , replace=True)
    for label in class_counts.index
])

# 将数据打乱
balanced_data2 = balanced_data.sample(frac=1)

结果如下
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南师大蒜阿熏呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值