模型上新!来通义灵码体验 QwQ 推理模型!

今天,阿里云发布并开源全新的推理模型通义千问QwQ-32B。通过大规模强化学习,千问QwQ-32B在数学、代码及通用能力上实现质的飞跃,整体性能比肩DeepSeek-R1。在保持强劲性能的同时,千问QwQ-32B还大幅降低了部署使用成本,在消费级显卡上也能实现本地部署。

通义灵码目前已经支持 QwQ-plus 模型,欢迎大家在【智能问答】里,选择切换模型,即可体验更小尺寸、更强性能的新模型!

图片

性能比肩全球最强开源推理模型

千问QwQ-32B模型向全球开源,所有人都可免费下载及商用。

图片

千问QwQ-32B是阿里探索推理模型的最新成果。在冷启动基础上,通义团队针对数学和编程任务、通用能力分别进行了两轮大规模强化学习,在32B的模型尺寸上获得了令人惊喜的推理能力提升,应证了大规模强化学习可显著提高模型性能。

在一系列权威基准测试中,千问QwQ-32B 模型表现异常出色,几乎完全超越了OpenAI-o1-mini,比肩最强开源推理模型DeepSeek-R1:在测试数学能力的AIME24评测集上,以及评估代码能力的LiveCodeBench中,千问QwQ-32B表现与DeepSeek-R1相当,远胜于o1-mini及相同尺寸的R1蒸馏模型;在由Meta首席科学家杨立昆领衔的“最难LLMs评测榜”LiveBench、谷歌等提出的指令遵循能力IFEval评测集、由加州大学伯克利分校等提出的评估准确调用函数或工具方面的BFCL测试中,千问QwQ-32B的得分均超越了DeepSeek-R1。

欢迎大家前往通义灵码,体验 QwQ-32B 出色能力!

通义灵码下载链接:https://lingma.aliyun.com/lingma/download

### QWQ 模型技术分析 #### 数学与编程能力出众 QwQ-32B-Preview 是由阿里云通义团队开发并开源的人工智能推理模型,在数学和编程方面表现出色,能够达到研究生级别的科学推理能力[^1]。 #### 自我优化机制 此模型引入了深度自省和自我对话的方法来增强自身的推理性能。这种独特的训练方式有助于提高复杂题的理解能力和解决效率。 #### 性能评估指标 在多个权威测试集上的优秀表现为该模型赢得了广泛认可。具体来说,在 GPQA、AIME、MATH-500 和 LiveCodeBench 这些评测标准下都取得了显著成绩。 #### 开源平台支持 为了促进学术交流和技术进步,QwQ 已经被发布到魔搭社区以及 Hugging Face 平台上供全世界的研究人员下载使用。 #### 发展前景展望 尽管目前还处于试验阶段并且存在一定不足之处(比如可能存在语言混淆现象或者特定专业知识覆盖不全等题),但是随着后续版本迭代更,这些题有望得到改善。 ```python # Python 示例代展示如何加载预训练的 QwQ 模型 from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/QwQ-32B-Preview" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) input_text = "请解释一下什么是机器学习?" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值