YOLOv8修改网络后进行训练时依然保持原网络结构

修改完网络后进行train,发现网络结构依然按原结构进行。

这种情况一般只会在使用终端命令进行训练时才会出现

解决办法:

1.不要使用终端命令

2.在项目里面创建py文件

from ultralytics import YOLO
model=(YOLO("ultralytics/cfg/models/v8/XXXXXX.yaml"))  #yaml文件路径
model.train(**{'cfg':'ultralytics/cfg/default.yaml'})   #这个路径应该是固定的,注意要在default文件里面修改参数,比如win系统要把works值改为0

3.default文件里面修改数据集路径

### 修改YOLOv8网络结构并进行训练 #### 查看始模型结构 为了有效地修改YOLOv8网络结构,首先要加载预训练模型并查看当前的架构。这可以通过调用`model.info()`方法来实现,该方法会输出详细的层信息以及每层对应的参数数量。 ```python from ultralytics import YOLO # 加载预训练YOLOv8模型 model = YOLO('yolov8n.pt') # 打印模型概要信息 print(model.info()) ``` #### 添加自定义模块(如CBAM) 根据具体需求,在适当位置插入新的组件或替换现有部分。例如,可以在骨干网之后加入注意力机制模块——CBAM (Convolutional Block Attention Module),以增强特征表达能力[^1]。 ```python import torch.nn as nn from cbam_module import CBAM # 假设已有一个实现了CBAM功能的Python文件cbam_module.py class CustomYOLO(YOLO): def __init__(self, config_path=None, pretrained=False): super().__init__(config_path=config_path, pretrained=pretrained) # 在指定位置添加CBAM模块 self.cbam_layer = CBAM(gate_channels=self.backbone.out_channels) def forward(self, x): x = self.backbone(x) x = self.cbam_layer(x) # 应用于backbone后的feature map上 return self.head(x) custom_model = CustomYOLO(pretrained=True) print(custom_model) ``` #### 验证结构调整有效性 完成上述操作后启动一次完整的训练流程。观察日志输出确认新引入的部分被正确识别,并且整体参数统计合理无误。当控制台显示出包含自定义组件在内的完整网络描述,则表明调整工作顺利完成。 #### 开始训练过程 最后一步就是利用准备好的数据集执行实际训练任务。确保配置文件中指定了正确的路径和其他必要的超参数设置。 ```bash python train.py --img 640 --batch 16 --epochs 50 \ --data custom_dataset.yaml \ --weights yolov8_custom.pth ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值