决策树时间复杂度优化

本文探讨了如何优化决策树算法的时间复杂度,包括选择最优特征、剪枝策略以及使用更高效的实现方法。通过理解决策树的构建过程,可以有效地减少计算量,提高模型训练和预测的效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

My DecisionTreeClassifier:
[0.96666667 0.96666667 0.86666667 0.9        1.        ]
cost time = 0.117

Sklearn DecisionTreeClassifier:
[0.96666667 0.96666667 0.9        0.96666667 1.        ]
cost time &#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值