Borel measurability

波莱尔可测性
第一次看见这个名词是在deep learning上,文中只是简单的提到了这么一个词,用于解释深度神经网络能够进行训练的原因分析,有限次的波莱尔函数的叠加仍然是波莱尔函数,而根据波莱尔的性质可知,(可以见百度百科波莱尔可测函数)

  1. 波莱尔函数是相当广泛的一类函数:一切波莱尔集的示性函数都是波莱尔函数;即如果,则它的示性函数是波莱尔函数。所谓的示性函数指的是,某个元素若是属于这个波莱尔集合,取值为一,不属于则取值为零。
  2. 函数y = g(x) 是定义在m维 的空间 R 上的单值实函数,称 g(x) 为(m元)波莱尔函数,如果   ∀ a , g ( x ) ≤   a ,   g ( x ) ∈ B , \ \forall a,g(x) \leq\ a,\quad\ g(x) ∈B,  ag(x) a g(x)B 其中B是m维的波莱尔代数。波莱尔函数又叫做波莱尔可测函数(或-可测函数) 。
  3. 波莱尔函数是一类相当广泛的函数,它包括一切阶梯函数、一切连续函数和分段连续函数。波莱尔函数经过有限次的加、减、乘、除运算以及函数的复合,仍然是波莱尔函数;波莱尔函数列的(上、下)极限以及上确界和下确界仍然是波莱尔函数。
  4. 个人对波莱尔函数的理解:我有一个函数,它属于n维度的实数集合,若是这个函数是连续的,或者是分段连续的,只要不是离散点组成的,则它就是波莱尔函数,
  5. 重要公式 R n R^n Rn中勒贝格可测函数L与波莱尔函数B的复合函数有如下关系:B°B=B, L°B=L, B°L=X, L°L=X,其中B,L分别表示波莱尔可测、勒贝格可测,X表示不一定可测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值