EKF扩展卡尔曼滤波器 - CTRV运动模型 及其代码实现

本文讲解了如何修正并扩展卡尔曼滤波器EKF,以适应恒速恒角速度(CTRV)模型,用于自动驾驶中的目标位置预测。作者详细阐述了一阶泰勒级数在近似非线性CTRV状态转移中的作用,提供了雅可比矩阵的计算方法,并给出了代码实现。
摘要由CSDN通过智能技术生成

本文参考了Adam大佬的帖子
https://blog.csdn.net/AdamShan/article/details/78265754
原贴的公式有一点点错误,这里已经修正了,并给出了代码实现。

CTRV模型

我们通常所使用的匀速CV,匀加速CA模型,是线性模型,没有考虑到目标的转向运动,所以在进行目标位置预测的时候会有一些误差。
所以,有一种更精确的模型可以描述目标的运动,也就是恒速度恒角速度运动模型,CTRV。
在这里插入图片描述
在CTRV中,我们认为目标有位置x,y,速度v(xy合速度),朝向角θ,以及角速度ω。这五个参数组成了状态向量。
x → ( t ) = ( x y v θ ω ) T \overrightarrow {x} (t)= (x y v \theta \omega )^ {T} x (t)=(xyvθω)T
所以,在 ω \omega ω 不为0的时候,状态向量可以写成这样子:
x → ( t + Δ t ) = g ( x ( t ) ) = ( v ω sin ⁡ ( ω Δ t + θ ) − v ω sin ⁡ ( θ ) + x ( t ) − v ω cos ⁡ ( ω Δ t + θ ) + v ω cos ⁡ ( θ ) + y ( t ) v ω Δ t + θ ω ) , ω ≠ 0 \overrightarrow{\mathrm{x}}(\mathrm{t}+\Delta \mathrm{t})=\mathrm{g}(\mathrm{x}(\mathrm{t}))=\left(\begin{array}{c}\frac{\mathrm{v}}{\omega} \sin (\omega \Delta \mathrm{t}+\theta)-\frac{\mathrm{v}}{\omega} \sin (\theta)+\mathrm{x}(\mathrm{t}) \\ -\frac{\mathrm{v}}{\omega} \cos (\omega \Delta \mathrm{t}+\theta)+\frac{\mathrm{v}}{\omega} \cos (\theta)+\mathrm{y}(\mathrm{t}) \\ \mathrm{v} \\ \omega \Delta \mathrm{t}+\theta \\ \omega\end{array}\right), \quad \omega \neq 0 x (t+Δt)=g(x(t))=ωvsin(ωΔt+θ)ωvsin(θ)+x(t)ωvcos(ωΔt+θ)+ωvcos(θ)+y(t)vωΔt+θω,ω=0
但是, ω \omega ω为0的时候,上面的公式分母中会出现0,所以,需要写成这样:
x → ( t + Δ t ) = g ( x ( t ) ) = ( v cos ⁡ ( θ ) Δ t + x ( t ) v sin ⁡ ( θ ) Δ t + y ( t ) v ω Δ t + θ ω ) , ω = 0 \overrightarrow{\mathrm{x}}(\mathrm{t}+\Delta \mathrm{t})=\mathrm{g}(\mathrm{x}(\mathrm{t}))=\left(\begin{array}{c}\mathrm{v} \cos (\theta) \Delta \mathrm{t}+\mathrm{x}(\mathrm{t}) \\ \mathrm{v} \sin (\theta) \Delta \mathrm{t}+\mathrm{y}(\mathrm{t}) \\ \mathrm{v} \\ \omega \Delta \mathrm{t}+\theta \\ \omega\end{array}\right), \quad \omega=0 x (t+Δt)=g(x(t))=vcos(θ)Δt+x(t)vsin(θ)Δt+y(t)vωΔt+θω,ω=0

EKF扩展卡尔曼滤波器

在看本文之前,想必你已经能够理解并且掌握KF滤波器。但是我们知道,KF是一个纯线性滤波器,也就是只能支持匀速和匀加速模型(也就是CV和CA)。如果我们需要引入CTRV,就需要扩展卡尔曼滤波器EKF。那么它是什么原理呢?
我们知道,想要使用卡尔曼滤波器的五个公式,必须保证状态转移矩阵是线性模型,因为误差矩阵只有线性变换之后才能保证还是高斯分布。
所以,我们想要使用非线性的CTRV模型,就必须想一个办法进行近似,让这些方程变成线性方程。
那么方法来了,在大学上过高数的小伙伴一定学过泰勒级数这个神器。泰勒级数的作用是,将一切函数,用导数的方式进行展开,只要展开的级数足够多,最后就可以无限逼近原函数。
T ( x ) = f ( u ) + ( x − u ) Df ⁡ ( u ) + 1 2 ! ( x − u ) 2 D 2 f ( u ) + … \mathrm{T}(\mathrm{x})=\mathrm{f}(\mathrm{u})+(\mathrm{x}-\mathrm{u}) \operatorname{Df}(\mathrm{u})+\frac{1}{2 !}(\mathrm{x}-\mathrm{u})^{2} \mathrm{D}^{2} \mathrm{f}(\mathrm{u})+\ldots T(x)=f(u)+(xu)Df(u)+2!1(xu)2D2f(u)+

我们发现,这里的一阶展开刚好是一个线性函数。CTRV的一阶泰勒展开就是它的近似线性化方程。
但是也可以发现,这是一种有损的近似,展开点距离越远,误差就越大,当展开点足够近的时候,误差就可以忽略。
在自动驾驶领域,由于采样频率通常可以达到20Hz以上,所以一阶泰勒级数可以进行比较准确的近似。
那么剩下的工作就只剩下求一阶导了。我们对卡尔曼滤波中的状态转移矩阵F中的元素,替换为状态转移方程的偏导数,就可以得到雅克比矩阵 J F J_F JF 用这个雅克比矩阵替换卡尔曼滤波中的F,就可以完成预测之后的误差更新了。
对于CTRV模型,求导之后的雅克比矩阵如下( ω ≠ 0 \omega \neq 0 ω=0):
J F = [ 1 0 1 ω ( − sin ⁡ ( θ ) + sin ⁡ ( Δ t ω + θ ) ) v ω ( − cos ⁡ ( θ ) + cos ⁡ ( Δ t ω + θ ) ) Δ t v ω cos ⁡ ( Δ t ω + θ ) − v ω 2 ( − sin ⁡ ( θ ) + sin ⁡ ( Δ t ω + θ ) ) 0 1 1 ω ( cos ⁡ ( θ ) − cos ⁡ ( Δ t ω + θ ) ) v ω ( − sin ⁡ ( θ ) + sin ⁡ ( Δ t ω + θ ) ) Δ t v ω sin ⁡ ( Δ t ω + θ ) − v ω 2 ( cos ⁡ ( θ ) − cos ⁡ ( Δ t ω + θ ) ) 0 0 1 0 0 0 0 0 1 Δ t 0 0 0 0 1 ] \mathrm{J}_{\mathrm{F}}=\left[\begin{array}{cccc} 1 & 0 & \frac{1}{\omega}(-\sin (\theta)+\sin (\Delta \mathrm{t} \omega+\theta)) & \frac{\mathrm{v}}{\omega}(-\cos (\theta)+\cos (\Delta \mathrm{t} \omega+\theta))& \frac{\Delta \mathrm{tv}}{\omega} \cos (\Delta \mathrm{t} \omega+\theta)-\frac{\mathrm{v}}{\omega^{2}}(-\sin (\theta)+\sin (\Delta \mathrm{t} \omega+\theta))\\ 0 & 1 & \frac{1}{\omega}(\cos (\theta)-\cos (\Delta \mathrm{t} \omega+\theta)) & \frac{\mathrm{v}}{\omega}(-\sin (\theta)+\sin (\Delta \mathrm{t} \omega+\theta))&\frac{\Delta \mathrm{tv}}{\omega} \sin (\Delta \mathrm{t} \omega+\theta)-\frac{\mathrm{v}}{\omega^{2}}(\cos (\theta)-\cos (\Delta \mathrm{t} \omega+\theta))\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & \Delta \mathrm{t}\\ 0 & 0 & 0 & 0 & 1 \end{array}\right] JF=1000001000ω1(sin(θ)+sin(Δtω+θ))ω1(cos(θ)cos(Δtω+θ))100ωv(cos(θ)+cos(Δtω+θ))ωv(sin(θ)+sin(Δtω+θ))010ωΔtvcos(Δtω+θ)ω2v(sin(θ)+sin(Δtω+θ))ωΔtvsin(Δtω+θ)ω2v(cos(θ)cos(Δtω+θ))0Δt1
对于 ω = 0 \omega = 0 ω=0 :
J F = [ 1 0 Δ t cos ⁡ ( θ ) − Δ t v sin ⁡ ( θ ) 0 0 1 Δ t sin ⁡ ( θ ) Δ t v cos ⁡ ( θ ) 0 0 0 1 0 0 0 0 0 1 Δ t 0 0 0 0 1 ] \mathrm{J}_{\mathrm{F}}=\left[\begin{array}{ccccc} 1 & 0 & \Delta \mathrm{t} \cos (\theta) & -\Delta \mathrm{tv} \sin (\theta) & 0 \\ 0 & 1 & \Delta \mathrm{t} \sin (\theta) & \Delta \mathrm{tv} \cos (\theta) & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & \Delta \mathrm{t} \\ 0 & 0 & 0 & 0 & 1 \end{array}\right] JF=1000001000Δtcos(θ)Δtsin(θ)100Δtvsin(θ)Δtvcos(θ)010000Δt1
上面的公式基于原贴,已经对原贴公式的一些错误进行了修正。
在实际应用中,我们收到的传感器感知结果都是基于笛卡尔坐标系的,也就是线性观测。那么我们的观测矩阵还保持不变,不需要求雅克比。(如果你的观测值基于极坐标,那么就需要按照原贴的方法求解了。)

例如,我们的观测值只有位置坐标 x x x y y y,观测矩阵 H H H如下:
J H = H = [ 1 0 0 0 0 0 1 0 0 0 ] J_{H} = \mathrm{H}=\left[\begin{array}{lllll} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}\right] JH=H=[1001000000]
总结一下,对于CTRV的EKF,其步骤和KF是一样的,还是那五步,只不过变成了如下的过程:
x k + 1 = g ( x k , u ) \mathrm{x}_{\mathrm{k}+1}=\mathrm{g}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{u}\right) xk+1=g(xk,u)
P k + 1 = J F P k J F T + Q \mathrm{P}_{\mathrm{k}+1}=\mathrm{J}_{\mathrm{F}} \mathrm{P}_{\mathrm{k}} \mathrm{J}_{\mathrm{F}}^{\mathrm{T}}+\mathrm{Q} Pk+1=JFPkJFT+Q
K k = P k J H T ( J H P k J H T + R ) − 1 K_{k}=P_{k} J_{H}^{T}\left(J_{H} P_{k} J_{H}^{T}+R\right)^{-1} Kk=PkJHT(JHPkJHT+R)1
x k = x k + K k ( z k − h ( x k ) ) x_{k}=x_{k}+K_{k}\left(z_{k}-h\left(x_{k}\right)\right) xk=xk+Kk(zkh(xk))
P k = ( I − K k J H ) P k \mathrm{P}_{k}=\left(I-K_{k} J_{H}\right) P_{k} Pk=(IKkJH)Pk

代码实现

求雅克比矩阵最好通过ceres库来进行。但是,我们其实只需要CTRV,所以不如直接手写。
这里我只做了J_f的实现,供大家参考。
由于观测值只有XY,观测方程实际上还是线性的,所以不需要J_h,直接用原来的H即可 ( J H = H J_{H}=H JH=H) 。


void EKF::predict_ctrv() {
  double dt = 0.1;
  double x = x_hat(0);
  double y = x_hat(1);
  double v = x_hat(2);
  double yaw = x_hat(3);
  double yaw_rate = x_hat(4);
  Eigen::MatrixXd J_f(5, 5);
  if (yaw_rate > 0.000001) {
  //这是yaw_rate(omega)不为0的情况
    double J_x_x = 1;
    double J_x_y = 0;
    double J_x_v = (1 / yaw_rate) * (sin(yaw + yaw_rate * dt) - sin(yaw));
    double J_x_yaw = (v / yaw_rate) * (cos(yaw + yaw_rate * dt) - cos(yaw));
    double J_x_yaw_rate = dt * (v / yaw_rate) * cos(yaw + yaw_rate * dt) - ((v / (yaw_rate * yaw_rate)) * (sin(yaw + yaw_rate * dt) - sin(yaw)));
    double J_y_x = 0;
    double J_y_y = 1;
    double J_y_v = (1 / yaw_rate) * (cos(yaw) - cos(yaw + yaw_rate * dt));
    double J_y_yaw = (v / yaw_rate) * (sin(yaw + yaw_rate * dt) - sin(yaw));
    double J_y_yaw_rate = dt * (v / yaw_rate) * sin(yaw + yaw_rate * dt) - ((v / (yaw_rate * yaw_rate)) * (cos(yaw) - cos(yaw + yaw_rate * dt)));
    J_f << J_x_x, J_x_y, J_x_v, J_x_yaw, J_x_yaw_rate, J_y_x, J_y_y, J_y_v, J_y_yaw, J_y_yaw_rate, 0, 0, 1, 0, 0, 0, 0, 0, 1, dt, 0, 0, 0, 0, 1;
    //状态向量的预测直接用状态转移方程
    x = x + v / yaw_rate * (sin(yaw + yaw_rate * dt) - sin(yaw));
    y = y + v / yaw_rate * (-cos(yaw + yaw_rate * dt) + cos(yaw));
    v = v;
    yaw = yaw + yaw_rate * dt;
    yaw_rate = yaw_rate;
    x_hat << x, y, v, yaw, yaw_rate;
    //协方差矩阵的更新用上面求好的雅克比矩阵
    P = J_f * P * J_f.transpose() + Q;
  } else {
  //这是yaw_rate(omega)为0的情况
    double J_x_x = 1;
    double J_x_y = 0;
    double J_x_v = dt * cos(yaw);
    double J_x_yaw = -1 * dt * v * sin(yaw);
    double J_x_yaw_rate = 0;
    double J_y_x = 0;
    double J_y_y = 1;
    double J_y_v = dt * sin(yaw);
    double J_y_yaw = dt * v * cos(yaw);
    double J_y_yaw_rate = 0;
    J_f << J_x_x, J_x_y, J_x_v, J_x_yaw, J_x_yaw_rate, J_y_x, J_y_y, J_y_v, J_y_yaw, J_y_yaw_rate, 0, 0, 1, 0, 0, 0, 0, 0, 1, dt, 0, 0, 0, 0, 1;
    x = x + v * cos(yaw) * dt;
    y = y + v * sin(yaw) * dt;
    v = v;
    yaw = yaw + yaw_rate * dt;
    yaw_rate = yaw_rate;
    x_hat << x, y, v, yaw, yaw_rate;
    P = J_f * P * J_f.transpose() + Q;
  }
}
  • 10
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: EKF扩展卡尔曼滤波器)是一种在非线性系统中进行状态估计的滤波器,它通过使用线性近似来处理非线性的过程和测量模型。 在MATLAB中实现EKF,您可以按照以下步骤进行: 1. 定义初始状态估计(均值和协方差矩阵),这是过程模型中的状态变量和其对应的噪声。 2. 编写系统模型函数,该函数应该返回系统转移矩阵、噪声协方差矩阵和状态转移函数。 3. 编写过程模型函数,该函数应该根据系统模型给定的状态转移函数和噪声协方差矩阵,计算状态估计的更新,并返回更新后的状态估计。 4. 定义观测模型函数,该函数应该返回测量模型的观测矩阵和噪声协方差矩阵。 5. 编写测量模型函数,该函数应该根据观测模型给定的观测矩阵和噪声协方差矩阵,计算观测估计的更新,并返回更新后的观测估计。 6. 在主程序中,按照以下步骤循环执行: a. 使用过程模型函数进行状态估计的更新。 b. 使用测量模型函数进行观测估计的更新。 c. 进行状态与观测的合并更新,得到最终的状态估计和协方差矩阵。 MATLAB中有一些优秀的开源库可以实现EKF,例如Robotics System Toolbox等。这些库提供了封装好的函数和示例,使您可以更轻松地实现EKF代码。 通过以上步骤和使用现有的开源库,您可以实现EKF滤波器的MATLAB代码。 ### 回答2: EKF是指扩展卡尔曼滤波器(Extended Kalman Filter),是将卡尔曼滤波器用于非线性系统的一种扩展EKF算法是基于卡尔曼滤波器的拓展,通过将非线性系统进行线性化来实现滤波。它使用非线性系统的近似线性模型,并通过不断迭代的线性近似来提高滤波效果。 在MATLAB中实现EKF算法,需要以下几个步骤: 1. 构建系统模型:首先,需要定义状态方程和观测方程。状态方程描述了系统的动态行为,而观测方程描述了系统观测到的数据和状态之间的关系。 2. 初始化参数:设置初始状态向量、初始协方差矩阵和系统噪声和观测噪声的协方差矩阵。初始状态向量和协方差矩阵可以由先验知识或测量数据进行估计。 3. 迭代计算:利用EKF算法的迭代过程进行滤波。首先,使用状态方程对状态向量进行预测,并更新预测协方差矩阵。然后,利用观测方程进行状态修正,并更新修正后的状态向量和协方差矩阵。然后,将修正后的状态向量和协方差矩阵作为下一次迭代的初始值。 4. 循环迭代:根据所需的滤波周期,持续地进行迭代计算,直到达到所需的滤波效果。 MATLAB中有一些工具箱、函数和示例代码可供使用,如`ekf`函数和`ExtendedKalmanFilter`类等。这些工具可以简化EKF算法的实现过程。 总之,通过在MATLAB中实现EKF算法,我们可以利用该算法对非线性系统进行滤波,从而准确地估计系统的状态并提高预测效果。 ### 回答3: EKf(Extended Kalman Filter)是一种卡尔曼滤波器扩展版本,用于处理非线性系统模型。在MATLAB中,可以使用以下步骤来实现EKf代码: 1. 定义系统模型和观测模型的状态和观测变量。这些变量通常表示为向量或矩阵形式。 2. 初始化初始状态估计值和协方差矩阵。 3. 在每个时间步进行以下循环: a. 预测阶段:使用系统模型和上一个时间步的状态估计值进行预测,得到预测的状态估计值和协方差矩阵。 b. 更新阶段:使用预测的状态估计值和观测模型计算卡尔曼增益,并使用观测值来更新状态估计值和协方差矩阵。 4. 重复步骤3,直到达到预定的时间步数或收敛条件。 EKf代码实现过程中需要使用MATLAB的数值计算和矩阵运算函数,例如矩阵乘法、转置、逆矩阵等。 最后,需要注意的是EKf代码实现可能会因为不同的系统模型和观测模型而有所不同,因此具体的实现细节需要根据具体的应用进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

工具人ToolBoy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值