0、
本博客是我在学习的时候翻译前人博客的版本,大家多多反馈。
感谢“密歇根理工大学--计算机科学系--Dr. C.-K. Shene 教授”做出的杰出贡献。
1、动机
B 样条曲线是多项式曲线。虽然它们很灵活,而且有许多很好的曲线设计属性,然而它们无法表示最简单的曲线:圆。正如有理曲线页面上所讨论的,圆只能 用有理函数(即 两个多项式的商)。应对圆形、椭圆和许多其他 不能用多项式表示的曲线,我们需要扩展到 B 样条曲线。
圆是2次曲线。让我们来看看b样条是为何不能表示它的。下面是四条有8个控制点的闭合b样条曲线。从左到右的节点重复度分别是2、3、5和10。2节点重复度形成的闭b样条曲线看起来不像一个圆。相反,它看起来像一个圆形的正方形。3节点重复度曲线看起来更好一些。度越大,曲线的“圆度”越好。10节点重复度闭合曲线与圆非常相似;但是,它不是一个圆。即使你可以接受这个b样条曲线的10度作为一个圆,那就过分了!为什么2次曲线要用10节点重复度b样条曲线来表示?
为了解决这个问题,我们将使用齐次坐标将 B 样条推广到有理曲线。 因此,我们得名 Non-Uniform Rational B-Splines(NURBS)。
2、定义
让我们考虑如何将齐次坐标引入b样条曲线,并推导出NURBS定义。
给定n+1个控制点P0, P1,…, Pn和结向量U = {u0, u1,…, um}为m+1节时,由这些参数定义的p次b样条曲线如下:
设控制点Pi改写为具有四个分量的列向量,其中第四个分量为1:
我们可以把这个看做齐次坐标。由于将一个点(齐次形式)的坐标与一个非零数相乘不会改变点的位置,我们将Pi的坐标与权重wi相乘,得到齐次坐标的新形式:
注意Pwi和Pi表示齐次坐标中的同一点。将新的齐次形式代入上述b样条曲线方程,可得:
因此,点Cw(u)为齐次坐标形式的原始b样条曲线。现在,让我们用第四个坐标除以Cw(u),将其转换回笛卡尔坐标:
最后,我们用简洁的形式表示如下:
这是由控制点P0, P1,…定义的p次NURBS曲线, Pn,结向量U = {u0, u1,…, um},权重为w0, w1, .., wn。注意,由于权重wi与控制点Pi作为其第四个分量相关联,权重的数量必须与控制点的数量一致。
总体而言,权重wi为正;但负权重有着有趣的现象:如果一个权重,例如wi,变为零,Pi的系数为零,因此,控制点Pi对任何u的C(u)计算都没有影响(即Pi是“禁用的”)。此外,零权重还有一个非常有用的解释,称为无限控制点
两个直接结果
以下是根据上述定义可以立即得到的两个结果。
- 如果所有权值都等于1,则NURBS曲线简化为b样条曲线。
这是很明显的,因为在这种情况下,齐次形式的控制点和传统的笛卡尔形式是一样的,分母是1。 - NURBS曲线是有理的
这也是显而易见的。与控制点Pi, Ni,p(u)wi相乘的值是p次多项式,分母是所有系数的和,因此也是p次多项式,因此控制点Pi的系数是p次多项式的商,函数C(u)是有理函数。
这两个结果表明b样条曲线是NURBS曲线的特殊情况。此外,由于NURBS曲线是有理的,圆,椭圆和许多其他曲线是不可能用b样条曲线表示的,但是现在可以用NURBS曲线表示了。
几何解释
NURBS曲线是一种特殊的曲线吗?事实证明,它们并不是。事实上,它们只是b样条曲线的另一个形式(推广)。考虑控制点Pwi = (wixi, wiyi, wizi, wi)。这个点有四个分量,可以看作是四维空间中的一个点,因此,下面的C(u)就变成了四维空间中的b样条曲线:
在讨论齐次坐标的几何解释时,将前三个坐标分量除以第四个分量相当于将一个四维点投影到平面w = 1。由于上述曲线是通过前三个坐标除以第四个坐标转换为NURBS曲线的,因此我们可以得出,三维空间中的NURBS曲线只是b样条曲线在四维空间中的投影。因此,如果我们很好地理解了b样条曲线,我们应该能够很容易地理解NURBS曲线。
3、重要性质
给定一组n+1个控制点P0, P1,…, Pn,每一个都与一个非负权值wi相关联(即Pi具有权值wi >= 0),以及一个结向量U = {u0, u1,…, um}为m+1节时,p次NURBS曲线定义如下:
其中 RI,P(U) 定义如下:
之所以使用不同的表示法,是因为我们想以尽可能按照b样条曲线的形式重写NURBS曲线的定义。在上述表示法中,Ri,p(u)是NURBS基函数。
NURBS 基函数的重要性质
由于NURBS是b样条的推广,它应该具有b样条的所有性质。下面是一些最重要的NURBS基函数。请将它们与b样条基函数进行比较。
- Ri,p(u)是u上的p次有理函数。
- 非负性——对于所有i和p, Ri,p(u)是非负的。
- 本地支持——Ri,p(u)在[ui,ui+p+1]上是非零的。
由于Ni,p(u)在[ui,ui+p+1)上是非零的,Ri,p(u)也是。注意,我们假设wi是非负的。 - 在任何结点跨度[ui, ui+1)上,最多p+1次p基函数是非零的,即:Ri-p,p(u), Ri-p+1,p(u), Ri-p+2,p(u),…, Ri,p(u)。
- 单位划分——所有非零次p基函数在span [ui, ui+1)上的和为1。
- 若结点个数为m+1,基函数的次数为p,且p个基函数的次数为n+1,则m = n+ p +1:
- 基函数Ri,p(u)是一条p次有理函数的复合曲线,连接点在[ui, ui+p+1)的结点处。
- 在重复度为k的结上,基函数Ri,p(u)是Cp-k连续的。
因此,增加多样性会降低连续性,增加重复度会增加连续性。 - 如果对于所有i,满足wi = c,其中c是一个非零常数,则Ri,p(u) = Ni,p(u)
因此,b样条基函数是NURBS基函数在所有权值都成为非零常数时的特殊情况。我们已经提到了c = 1的特殊情况。
NURBS 曲线的重要性质
下面列出了NURBS曲线的重要特性。请将它们与b样条曲线进行比较。注意NURBS可以是打开的,夹住的和关闭的。与b样条曲线一样,如果第一个p+1节和最后一个p+1节等于定域的左端和右端