穿越凸障碍物的运动规划优化(GCS)

从在城市地区运送包裹的四旋翼飞行器到在封闭仓库中移动的机器人手臂,围绕障碍物的运动规划是现代机器人技术的核心挑战。基于优化的规划者可以在满足机器人动力学要求的前提下,在高维空间中设计轨迹。然而,在存在障碍的情况下,这些优化问题变得非凸且很难求解,甚至只是局部求解。因此,当面对混乱的环境时,机器人专家通常会退回到基于采样的规划者,这种规划者不能很好地适应高维,并与连续的微分约束作斗争。在这里,我们提出了一个框架,使凸优化,以有效和可靠地规划轨迹围绕障碍。具体来说,我们关注的是无碰撞运动规划的成本和约束的形状,持续时间和轨迹的速度。利用最近在凸集图(GCS)中寻找最短路径的技术,我们设计了一个实用的凸松弛规划问题。我们表明,这种松弛通常是非常紧的,以至于一个廉价的后处理其解决方案几乎总是足以确定全局最优的无碰撞轨迹(在参数化的曲线类内)。通过数值和硬件实验,我们证明了GCS算法能够在更短的时间内找到更好的轨迹,并且能够在高维复杂空间中可靠地设计轨迹环境。
一句话总结:凸优化可以可靠地设计出机器人在复杂障碍物环境中运动的最优轨迹。

引言

高效的障碍物轨迹设计是机器人自主设计的一个重要挑战。从四旋翼机到机器人手臂,从自动驾驶汽车到有腿的机器人,几乎每一个现代机器人系统都依赖于防撞规划器来在其环境中移动。人们提出了各种各样的技术来解决机器人技术中这个长期存在的问题(1),每种技术都有其各自的特点优势和局限性。数值优化为运动学和动力学约束下的高维空间运动规划提供了成熟的工具(2-7)。然而,通过将规划问题转化为非凸优化问题,并依赖于局部求解器,如果环境中存在障碍,这些技术往往无法找到可行的轨迹。尽管已经提出了多种方法来缓解这个问题(8-10),但机器人专家在面对混乱的环境时通常更喜欢基于采样的规划者(11-13)。基于采样的算法在概率上是完备的,这意味着,如果存在一条可行的路径,它们最终会找到一条,不管有多少障碍。然而,即使使用渐近最优的基于抽样的规划者(14-16),我们设计的轨迹在其中可能是相当不理想的高维,密集抽样是不可行的。此外,尽管这些算法中有许多支持运动动力学约束(17-19),但连续微分约束很难强加于离散样本,这使得这些运动动力学变量在实践中不太成功。基于混合整数优化(20-24)的规划者的承诺是利用以上两个方面的优点:基于采样的算法的完整性,以及轨迹优化处理机器人运动学和动力学的方便性,以及全局最优性的额外好处。然而,这些技术的传播受到了它们的运行时间的严重限制,即使是小问题也可能只有几分钟的时间。凸优化(25)通常被认为是一种不适合设计绕障碍物轨迹的工具。一方面,考虑到精确无碰撞运动规划的计算困难,这种信念是有充分依据的(26,27)。另一方面,这些负面结果并不排除基于凸优化的近似运动规划者的可能性,它们在实践中通常遇到的问题上表现得非常好。在(28)中,规划问题的一个层次凸松弛被截断为低阶,代价是失去了规划算法的完整性。然而,这种特殊的方法仅限于多边形轨迹,而且只应用于低维度。提出了一种基于凸优化的近似算法一类有限但重要的无碰撞规划问题的解(见电影1)。我们将这种规划图命名为凸集图(GCS),以其底层优化框架(29)命名。GCS可以处理各种有用的差异成本和约束。尽管只依赖于凸规划,它设计的无碰撞轨迹几乎总是全局最优的选择类曲线。此外,GCS可以有效地扩展到高维,并且在问题数据的某些假设下,保证在规划问题允许解决方案时确定可行的轨迹。

结果

在这一节的开始,我们简要描述了GCS所解决的运动规划问题,并总结了我们算法的主要特性和保证。然后我们在各种机器人上演示GCS。首先,为了说明我们的方法的一些关键优势,我们考虑一个复杂迷宫中的规划问题。其次,我们证明了GCS能够可靠地合成动态可行且全局最优的轨迹(在参数化曲线类内),用于四旋翼飞行穿过建筑物(见图1)。我们证明,与高度优化的基于抽样的规划方法相比,GCS可以在更短的时间内设计出更短的轨迹。最后,我们用14维的双手操作问题来说明GCS在实际硬件上的可扩展性(见图2和电影1)。

GCS轨迹优化

无碰撞运动规划的主要挑战是搜索空间的非凸性。与(23)类似,GCS通过对非凸避障约束的补充描述缓解了这一问题,其中机器人需要通过安全凸区域集合Q移动1……qn ⊂rd 不与障碍物相交。这将导致一个离散组件(选择安全区域进行遍历)和一个连续组件(在每个区域内设计机器人轨迹)的优化问题。GCS利用一种高效的融合了凸优化方法的图搜索和轨迹优化方法来解决这个问题。以下是GCS处理的规划问题的一个基本例子:

q是要设计的轨迹,T是它的持续时间,它本身就是一个决策变量。成本是轨迹弧长L(q) =的加权和,用户指定的权重a, b≥0 R0 T˙2dt和持续时间t第一个约束通过要求机器人构型在任何时候都处于一个安全集合来确保避免碰撞。注意,这是一个比基于采样的运动规划更强的约束,在采样的运动规划中,轨迹通常在有限数量的点上被检查为无碰撞。第二个约束条件使速度q(t)˙在所有时刻都处于一个凸集合D内。其余约束条件对机器人构型及其导数施加初始和最终条件。
GCS可以处理的额外成本和限制包括对机器人速度的凸惩罚,以及对轨迹持续时间和长度的硬性限制。我们也可以要求轨迹任意可微很多次:这使得我们可以为全驱动和差动平系统设计动态可行的轨迹,比如机器人手臂和四旋翼。最后,为了使轨迹更加平滑,在下面的实验中,我们还将考虑对机器人加速度的惩罚,尽管这些目前没有像我们的规划者所做的速度成本那样有效地处理(参见材料和方法)。
我们的算法将规划问题(1)简化为GCS(29)中的最短路径问题(SPP)。问题的离散部分是由一个编码安全集合之间连接性的图来建模的。然后使用来自(29)的技术来激活和取消依赖于我们在图中采用的路径的连续机器人轨迹上的成本和约束。(见图3表示GCS中的SPP,图4表示将规划问题(1)简化为GCS中的SPP。)最终的优化问题是天生的混合整数,但是,与常见的混合整数公式(23,24)相比,它的凸松弛通常是非常紧的。在这一点上,GCS的操作只需要两个步骤:它解决了混合整数程序的凸松弛,并通过廉价的后处理恢复了无碰撞轨迹。第一种是典型的线性规划(LP)或二阶锥规划(SOCP),它们可以用常用的求解器有效地求解。第二个是一个随机四舍五入算法,它产生一个整数可行解,没有任何分支和界。在下面的实验中,这些圆形解几乎总是全局最优的原始混合整数问题。

算法属性和保证

GCS做了一些近似来有效地解决规划问题(1)。这里我们简要描述这些如何影响我们的轨迹的可行性和最优性。
第一个近似是安全配置空间Q⊂R的描述d 作为凸区域Q的并集1……qn。虽然这种描述可以精确地描述多边形障碍,但一般来说,自由空间的近似分解是必要的。对于这一步,有多种实用算法(30-33),以及针对运动树复杂构型空间的方法(34-37)。第二个近似是轨迹参数化,这是数值解决我们的问题所必需的。这里我们使用B´ezier曲线:这些曲线对运动规划具有许多有用的特性(38-42),它们允许GCS设计轨迹,保证在任何时候都是安全的,没有离散化错误。这些近似的影响可以通过增加安全区域的数量和B´ezier曲线的程度来减少,而只会轻微地(多项式地)影响GCS的运行时间(见材料和方法)。

直到空间

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值