[补充内容]关于使用matlab进行方程组求解的线性代数相关知识补充——线性方程组

前言

根据李永乐老师课程学习。主要记载线性方程组相关的性质、定理等知识,不会进行定理推导、证明。

Ax=0解的性质

有解判定:
 如果η是Ax=0的解,即Aη=0,可以得出
  A(kη)=kAη=kX0=0即kη也是Ax=0的解。
 如果η1η2都是Ax=0的解,可以得出
  η1和η2的线性组合也是Ax=0的解。
定理:如果其次方程组系数矩阵的秩r(A)=r<n,则方程组有n-r个线性无关的解,且方程组的任一个解都可以由这n-r个线性无关的解线性表出。
这里面n-r个无关的解统称为基础解系(其次方程组的解的极大无关组)。
基础解系的特点:
 η1η2…ηt是齐次方程Ax=0的基础解析,它满足:
  (1)η1η2…ηt是Ax=0的解;
  (2)η1η2…ηt线性无关;
  (3)Ax=0的任一个解均可由η1η2…ηt线性表出。

Ax=b解的性质

有解判定:
A ‾ \overline{\text{A}} A=[A|b]
 Ax=b有解⇔r(A)=r( A ‾ \overline{\text{A}} A) 上划线的写法Markdown没有,是通过借助Latex公式参考文章
 Ax=b存在唯一解:r(A)=r( A ‾ \overline{\text{A}} A)=n
 Ax=b存在无穷解:r(A)=r( A ‾ \overline{\text{A}} A)<n
齐次方程组也成为它对应的非齐次方程组的导出组。
解的性质:
 如果ξ1,ξ2是Ax=b的解,则ξ12是导出组Ax=0的解。
 如果ξ是Ax=b的解,η是Ax=0的解,则ξ+kη是Ax=b的解
定理(解的结构):非齐次线性方程组Ax=b,若r(A)=r( A ‾ \overline{\text{A}} A)=r<n,且已知η1η2…ηn-r是导出组Ax=0的基础解析,α0是Ax=b的一个解,则方程组Ax=b的通解:
    α0+k1η1+k2η2+…+kn-rηn-r
其中k1,k2…kn-r是任意实数。

向量空间

所有的n维向量,带上加法和数乘运算的结构,叫做向量空间。
W是n维向量的费控集合,且
 (1)任意的α,β∈W可以推出α+β∈W(称为这个集合对加法是封闭的)
 (2)任意的α∈W,对于任意的k,可以推出kα∈W(称为这个集合对数乘是封闭的)
  则称W是n维向量空间的子空间。
封闭是什么意思? 封闭就是存在于这个集合当中,永远不会超出。
{Ax=0的解向量}就是一个解空间
如果向量空间V中的向量α1α2…αm满足
 (1)α1α2…αm线性无关;
 (2)V中任意向量β可由α1α2…αm线性表出,即
   x1α1+x2α2+…+xmαm
 则称α1α2…αm是向量空间的基。
 m称为向量空间的维数,V是m维向量空间。
 数组x1x2…xm称为向量β在基α1α2…αm下的坐标。
如果α1,α2,α3与β1,β2,β3是R的两个基,
设β1=c11α1+c12α2+c13α3
 β2=c21α1+c22α2+c23α3
  β3=c31α1+c32α2+c33α3
可以写成在这里插入图片描述
C称为由基α1,α2,α3到基β1,β2,β3的过度矩阵。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值