笔记整理:张嘉芮,天津大学硕士
链接:https://aclanthology.org/2021.findings-acl.278.pd
动机
传统的数据驱动方法不适用于零样本和少样本的场景。对于人类来说,常识知识是理解和推理的关键因素。在没有标注数据和用户立场的隐晦表达的情况下,引入常识性的关系知识作为推理支持,可以进一步提高模型在零样本和少样本场景下的泛化和推理能力。
亮点
本文的亮点主要包括:
(1)从外部结构知识库ConceptNet引入常识知识
(2)引入了一个基于图卷积网络的常识知识增强模块,利用关系子图的结构层和语义层信息,可以进一步增强模型的泛化和推理能力。
模型
问题定义:
形式上,表示包含N个样本的零样本立场检测数据集,其中 为文档, 为对应主题, 为立场标签。该任务的目标是获得给定