论文浅尝 | 利用常识知识图增强零样本和少样本立场检测

本文提出了一种利用常识知识图(如ConceptNet)增强的模型,针对零样本和少样本立场检测任务。通过图卷积网络(CompGCN)整合关系子图信息,提升了模型的泛化和推理能力。实验证明,这种方法在VAST数据集上取得了显著的改进,特别是在零样本和少样本情况下。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

819ee3e0c7da6d0c247032b2a127836a.png

笔记整理:张嘉芮,天津大学硕士

链接:https://aclanthology.org/2021.findings-acl.278.pd

动机

传统的数据驱动方法不适用于零样本和少样本的场景。对于人类来说,常识知识是理解和推理的关键因素。在没有标注数据和用户立场的隐晦表达的情况下,引入常识性的关系知识作为推理支持,可以进一步提高模型在零样本和少样本场景下的泛化和推理能力。

亮点

本文的亮点主要包括:

(1)从外部结构知识库ConceptNet引入常识知识

(2)引入了一个基于图卷积网络的常识知识增强模块,利用关系子图的结构层和语义层信息,可以进一步增强模型的泛化和推理能力。

模型

问题定义:

形式上,280cd9674dbe4b5895657e202def41b8.png表示包含N个样本的零样本立场检测数据集,其中  为文档,  为对应主题,  为立场标签。该任务的目标是获得给定 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值