In Memoriam Fabrizio Flacco

一、背景

最近在看人机协作相关的论文,其中有一篇是Arash Ajoudani于2018发表在Autonomous Robots题为Progress and prospects of the human–robot collaboration的综述。当看到最后Acknowledgements部分,有一句话是The authors would like to thank and remember Fabrizio Flacco for his spirit, contributions, and enthusiasm for writing this review paper. We will keep his memories alive in our hearts. 我意识到Fabrizio Flacco可能已经不在了,出于对学者的尊敬(在论文最后致敬,且因为意外去世总让人感觉不舒服),我查阅了Fabrizio Flacco博士的生平,以纪念其对人机协作领域做出的贡献。

二、Fabrizio Flacco博士生平

2004.09-2007.12:Master degree
cum laude in Automation Engineering from the University of Pisa

2008.11-2011.12:PhD degree
DIAG Robotics Lab of the Sapienza University of Rome

2011.01-2011.07:Visiting scholar
at the Stanford Artificial Intelligence Lab-SAIL (with Oussama Khatib)
注:Oussama Khatib是机器人领域非常牛的专家,和Bruno Siciliano教授一起编写了经典的《Springer Handbook of Robotics》

since 2015.12:CNRS Permanent researcher
at the CNRS-LIRMM in Montpellier, in the IDH group (leader Abderrahmane Kheddar)
朱吉鸿老师也在LIRMM学习过,在TRO发表了双臂辅助穿衣机器人相关的工作。

然而, Fabrizio Flacco博士于2016年9月18日在法国蒙彼利埃突然去世,享年34岁,原因是意外的心脏并发症。

三、Fabrizio Flacco博士所获荣誉

荣获 TRO Young Author Best Paper Award 2016。
在这里插入图片描述

Fabrizio Flacco导师Alessandro De Luca教授对其评价:“我和他共事了大约八年,先是作为他的博士学位导师,然后是他的同事,我一直很欣赏他的技术专长、创新思维、可用性和可靠性(他的机器人控制算法在罗马、斯坦福、图卢兹、空中客车、德国航空航天中心、蒙彼利埃等地无缝运行),所有这些都以一种矜持但非常随和的性格加入其中。”

其Safe physical human-robot collaboration成果可在youtube看到:https://www.youtube.com/watch?v=pIIhY8E3HFg

在这里插入图片描述

四、缅怀Fabrizio Flacco博士

Alessandro De Luca教授在IEEE ROBOTICS & AUTOMATION MAGAZINE及2016 IROS发表了悼念Fabrizio Flacco博士的文章与报告。
在这里插入图片描述
在这里插入图片描述

IEEE RAS 意大利分会决定以 Fabrizio 的名字重新命名YABP (Young Author Best Paper)奖。 首届“Fabrizio Flacco”青年作者最佳论文奖于2017年9月11日在米兰年会上由他的妻子Floriana颁发。

Antonio Franchi 为 Fabrizio 创建了一个网页,许多朋友和同事都在其中发布了消息、回忆和照片,网站为:https://homepages.laas.fr/afranchi/robotics/remembering-fabrizio

Fabrizio Flacco: In Memoriam:http://www.diag.uniroma1.it/~labrob/people/flacco/

以上信息均可在上述网站找到。

Ciao, Fabrizio; rest in peace.

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值