随机过程学习笔记05 随机积分(不完整)

终于到了随机积分了,想补概率论的知识就是因为看论文看到随机积分不明白。

从实值函数的Stieltjes积分开始,逐步转换到Ito随机积分,对随机积分的概念逐渐清晰,看到最后对这个积分又迷惑了,但在另一篇笔记里面终于搞清楚了。
对Ito积分更详细的笔记见

实值函数的Stieltjes积分

单调函数的Stieltjes积分

F ( t ) F(t) F(t)为区间 [ a , b ] [a,b] [a,b]上的单调函数, g ( t ) g(t) g(t)为连续函数,对与 [ a , b ] [a,b] [a,b]的一个划分 a = t 0 ( n ) < t 1 ( n ) < ⋯ < t N n ( n ) = b , a=t_0^{(n)}<t_1^{(n)}<\dots<t_{N_n}^{(n)}=b, a=t0(n)<t1(n)<<tNn(n)=b, g ( t ) g(t) g(t) F ( t ) F(t) F(t)Riemann-Stieltjes和定义为 ∑ i = 0 N n − 1 g ( ξ i ) [ F ( t i + 1 ( n ) ) − F ( t i ( n ) ) ] , t i ≤ ξ i ≤ t i + 1 . \sum_{i=0}^{N_n-1}g(\xi_i)[F(t_{i+1}^{(n)})-F(t_i^{(n)})],\quad t_{i}\le \xi_i\le t_{i+1}. i=0Nn1g(ξi)[F(ti+1(n))F(ti(n))],tiξiti+1. λ n : = max ⁡ i { t i + 1 ( n ) − t i ( n ) } \lambda_n:=\max_i\{t_{i+1}^{(n)}-t_i^{(n)}\} λn:=maxi{ ti+1(n)ti(n)} λ n → 0 ( n → ∞ ) \lambda_n\to 0(n\to \infty) λn0(n)时可证明Stieltjes和有极限,记为 ∫ [ a , b ] g ( t ) d F ( t ) \int_{[a,b]}g(t)\mathrm{d}F(t) [a,b]g(t)dF(t),称为 g ( t ) g(t) g(t) F ( t ) F(t) F(t)Riemann-Stieltjes积分

对有界变差函数的Stieltjes积分

对于区间 [ a , b ] [a,b] [a,b]如下的一个划分, P t 0 ( n ) … t N n ( n ) : a = t 0 ( n ) < t 1 ( n ) < ⋯ < t N n ( n ) = b P_{t_0^{(n)}\dots t_{N_n}^{(n)}}:a=t_0^{(n)}<t_1^{(n)}<\dots<t_{N_n}^{(n)}=b Pt0(n)tNn(n):a=t0(n)<t1(n)<<tNn(n)=b ⋁ ( P t 0 ( n ) … t N n ( n ) ) : = ∑ i = 0 N n − 1 ∣ f ( t i + 1 ( n ) ) − f ( t i ( n ) ) ∣ , \bigvee\left(P_{t_0^{(n)}\dots t_{N_n}^{(n)}}\right):=\sum_{i=0}^{N_n-1}|f(t_{i+1}^{(n)})-f(t_{i}^{(n)})|, (Pt0(n)tNn(n)):=i=0Nn1f(ti+1(n))f(ti(n)),称为函数 f ( t ) f(t) f(t)在划分 P t 0 ( n ) … t N n ( n ) P_{t_0^{(n)}\dots t_{N_n}^{(n)}} Pt0(n)tNn(n)上的变差
⋁ [ a , b ] ( f ) : = sup ⁡ [ a , b ] 上 的 所 有 划 分 ⋁ ( P t 0 ( n ) … t N n ( n ) ) \bigvee_{[a,b]}(f):=\sup_{[a,b]上的所有划分}\bigvee(P_{t_0^{(n)}\dots t_{N_n}^{(n)}}) [a,b](f):=[a,b]sup(Pt0(n)tNn(n))称为函数 f ( t ) f(t) f(t)在区间 [ a , b ] [a,b] [a,b]上的全变差 ⋁ [ a , b ] ( f ) < ∞ \bigvee_{[a,b]}(f)<\infty [a,b](f)<时,称 f ( t ) f(t) f(t) [ a , b ] [a,b] [a,b]上的有界变差函数

F ( t ) F(t) F(t)为有界变差函数,有结论(Jordan分解定理):有界变差函数总能表示为两个递增函数的差。 F ( t ) = F 1 ( t ) − F 2 ( t ) . F(t)=F_1(t)-F_2(t). F(t)=F1(t)F2(t).定义连续函数 g ( t ) g(t) g(t)关于 F ( t ) F(t) F(t)Stieltjes积分 ∫ [ a , b ] g ( t ) d F ( t ) = ∫ [ a , b ] g ( t ) d F 1 ( t ) − ∫ [ a , b ] g ( t ) d F 2 ( t ) \int_{[a,b]}g(t)\mathrm{d}F(t)=\int_{[a,b]}g(t)\mathrm{d}F_1(t)-\int_{[a,b]}g(t)\mathrm{d}F_2(t) [a,b]g(t)dF(t)=[a,b]g(t)dF1(t)[a,b]g(t)dF2(t)

布朗运动的轨道性质

Levy的振动性质:设 ( B t ) t ≥ 0 (B_t)_{t\ge 0} (Bt)t0为标准布朗运动, s ! = t 0 < t 1 < ⋯ < t n = s 2 s_!=t_0<t_1<\dots<t_n=s_2 s!=t0<t1<<tn=s2 Δ t k = t k + 1 − t k \Delta t_k=t_{k+1}-t_{k} Δtk=tk+1tk Δ B t k = B t k + 1 − B t k \Delta B_{t_k}=B_{t_{k+1}}-B_{t_k} ΔBtk=Btk+1Btk h = max ⁡ k Δ t k h=\max_{k}\Delta t_k h=maxkΔtk,则 E [ ∣ ∑ k = 0 n − 1 ( Δ B t k ) 2 − ( s 2 − s 1 ) ∣ 2 ] ≤ 2 h ( s 2 − s 1 ) . \mathbb{E}\left[\left|\sum_{k=0}^{n-1}(\Delta B_{t_k})^2-(s_2-s_1)\right|^2\right]\le 2h(s_2-s_1). Ek=0n1(ΔBtk)2(s2s1)22h(s2s1).
E [ ∣ ∑ k = 0 n − 1 ( Δ B t k ) 2 − ( s 2 − s 1 ) ∣ 2 ] = E [ ∣ ∑ k = 0

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值