随机微分方程学习笔记01 相对布朗运动的Ito积分

这个系列是在随机过程学习笔记之后的,本来想直接看随机微分方程的,但发现很多概念不了解,就先去看了随机过程的资料。


前情提要: Ω = { 所 有 ω } \Omega=\{所有\omega\} Ω={ ω} ω ( t ) ∈ P \omega(t)\in\mathbb{P} ω(t)P t ∈ I t\in I tI,随机过程比如 X : ( t , ω ) ↦ X ( t , ω ) ∈ R X:(t,\omega)\mapsto X(t,\omega)\in\R X:(t,ω)X(t,ω)R,随机变量 P → R \mathbb{P}\to\mathbb{R} PR

一维Ito积分

L 2 L^2 L2上构造

( F t ) t ≥ 0 (\mathscr{F}_t)_{t\ge 0} (Ft)t0是一个完备概率空间 ( Ω , F , P ) (\Omega,\mathscr{F},P) (Ω,F,P)上的滤子(filtration),即一个满足

  1. F s ⊂ F t ⊂ F , ( s ≤ t \mathscr{F}_s\subset\mathscr{F}_t\subset\mathscr{F}, (s\le t FsFtF,(st);
  2. F s = ∩ t > s F t , ( s ≥ 0 ) \mathscr{F}_s=\cap_{t>s}\mathscr{F}_t,(s\ge 0) Fs=t>sFt,(s0)【右正则性】;
  3. ∀ A ∈ F \forall A\in \mathscr{F} AF满足 P ( A ) = 0 P(A)=0 P(A)=0,有 A ∈ F 0 A\in\mathscr{F}_0 AF0

的网。

( X t , t ≥ 0 ) (X_t,t\ge 0) (Xt,t0)是一族 ( Ω , F , P ) (\Omega,\mathscr{F},P) (Ω,F,P)上的 R d \mathbb{R}^d Rd随机变量。
若满足所有 X ( t ) X(t) X(t) F s \mathscr{F}_s Fs可测的,则称 ( X ( t ) , t ≥ 0 ) (X(t),t\ge 0) (X(t),t0) ( F s ) (F_s) (Fs)-适合的( ( F t ) (\mathscr{F}_t) (Ft)-adapted)
若满足 ( t , ω ) ↦ X ( t , ω ) (t,\omega)\mapsto X(t,\omega) (t,ω)X(t,ω) B ⨂ F \mathscr{B}\bigotimes\mathscr{F} BF可测的,则称过程 X X X可测的(measurable)
若满足 ∀ ω \forall \omega ω,轨迹 t ↦ X ( t , ω ) t\mapsto X(t,\omega) tX(t,ω)是连续的( B \mathscr{B} B R \R R上的Borel),则称 ( X ( t ) , t ≥ 0 ) (X(t),t\ge 0) (X(t),t0)连续的(continuous)

已经有结论,若一个过程是(右)连续的,则它是可测的。

( W ( t ) , t ≥ 0 ) (W(t),t\ge 0) (W(t),t0)是一个连续的 ( F t ) (\mathscr{F}_t) (Ft)-合适的实值过程,若满足

  1. W ( 0 ) = 0 W(0)=0 W(0)=0
  2. 对任意 s s s 0 ≤ s ≤ t 0\le s\le t 0st W ( t ) − W ( s ) W(t)-W(s) W(t)W(s) F s \mathscr{F}_s Fs独立。
  3. 对任意 s s s 0 ≤ s ≤ t 0\le s\le t 0st W ( t ) − W ( s ) ∼ N ( 0 , t − s ) W(t)-W(s)\sim\mathscr{N}(0,t-s) W(t)W(s)N(0,ts)

则称 W W W一维标准布朗运动(standard one-dementional Brownian motion)

V : = { Y : Y 为 实 值 随 机 过 程 , F t − 适 合 , 可 测 , 且 满 足 ∥ Y ∥ V : = ( ∫ 0 ∞ E [ Y ( t ) 2 ] d t } ) 1 2 < ∞ } V:=\{Y:Y为实值随机过程,\mathscr{F}_t-适合,可测,且满足\|Y\|_{V}:=\left(\int_{0}^{\infty}\mathbb{E}\left[Y(t)^2\right]\mathrm{d}t\}\right)^{\frac{1}{2}}<\infty\} V:={ Y:YFtYV:=(0E[Y(t)2]dt})21<} Y ∈ V Y\in V YV Y ( t , ω ) = ∑ i = 0 ∞ η i ( ω ) 1 [ t i , t i + 1 ) ( t ) , Y(t,\omega)=\sum_{i=0}^{\infty}\eta_{i}(\omega)\mathrm{1}_{[t_i,t_{i+1})}(t), Y(t,ω)=i=0ηi(ω)1[ti,ti+1)(t),其中 ( t i ) t ≥ 0 (t_i)_{t\ge 0} (ti)t0是单增序列, η i \eta_i ηi F t i \mathscr{F}_{t_i} Fti-可测的随机变量,则称 Y Y Y简单的(simple)

简单过程的Ito积分

对于简单过程 Y ∈ V Y\in V YV可以自然地定义 ∫ 0 ∞ Y ( t ) d W ( t ) : = ∑ i = 0 ∞ η i ( W ( t t + 1 ) − W ( t i ) ) . \int_{0}^{\infty}Y(t)\mathrm{d}W(t):=\sum_{i=0}^{\infty}\eta_i(W(t_{t+1})-W(t_{i})). 0Y(t)dW(t):=i=0ηi(W(tt+1)W(ti)).等式右边这个级数在 L 2 ( P ) L^2(\mathbb{P}) L2(P)上收敛,这说明等式左边在 P \mathbb{P} P这个测度下是几乎处处良定义的。

  1. 证明等式右边收敛:
    :令 S k : = ∑ i = 0 k η i ( W ( t t + 1 ) − W ( t i ) ) S_k:=\sum_{i=0}^{k}\eta_i(W(t_{t+1})-W(t_{i})) Sk:=i=0kηi(W(tt+1)W(ti)) E [ ( S l − S k ) 2 ] = E [ ( ∑ i = k + 1 l η i ( W ( t t + 1 ) − W ( t i ) ) ) 2 ] = ∑ i = k + 1 l E [ η i 2 ( W ( t i + 1 ) − W ( t i ) ) 2 ] + 2 ∑ k + 1 ≤ i < j ≤ l E [ η i η j ( W ( t i + 1 ) − W ( t i ) ) ( W ( t j + 1 ) − W ( t j ) ) ] = ∑ i = k + 1 l E [ η i 2 ] ( t i + 1 − t i ) = ∫ t k + 1 t l + 1 E [ Y ( t ) 2 ] d t → 0 ( k , l → ∞ ) \begin{aligned} \mathbb{E}\left[(S_l-S_k)^2\right]=&\mathbb{E}\left[\left(\sum_{i=k+1}^{l}\eta_i(W(t_{t+1})-W(t_{i}))\right)^2\right]\\ =&\sum_{i=k+1}^{l}\mathbb{E}\left[\eta_i^2(W(t_{i+1})-W(t_i))^2\right]\\ &+2\sum_{k+1\le i<j\le l}\mathbb{E}\left[\eta_i\eta_j(W(t_{i+1})-W(t_i))(W(t_{j+1})-W(t_j))\right]\\ =&\sum_{i=k+1}^{l}\mathbb{E}\left[\eta_i^2\right](t_{i+1}-t_i)\\ =&\int_{t_{k+1}}^{t_{l+1}}\mathbb{E}\left[Y(t)^2\right]\mathrm{d}t\to 0\quad(k,l\to \infty) \end{aligned} E[(SlSk)2]====E(i=k+1lηi(W(tt+1)W(ti)))2i=k+1lE[ηi2(W(ti+1)W(ti))2]+2k+1i<jlE[ηiηj(W(ti+1)W(ti))(W(tj+1)W(tj))]i=k+1lE[ηi2](ti+1ti)tk+1tl+1E[Y(t)2]dt0(k,l)所以 ( S k ) (S_k) (Sk) L 2 ( P ) L^2(\mathbb{P}) L2(P)上的柯西列,所以等式右边收敛。 □ . \Box. .

  2. 证明等距 E [ ( ∫ 0 ∞ Y ( t ) d W ( t ) ) 2 ] = ∥ Y ∥ V 2 . \mathbb{E}\left[\left(\int_0^{\infty}Y(t)\mathrm{d}W(t)\right)^2\right]=\|Y\|_V^2. E[(0Y(t)dW(t))2]=YV2.
    【理解这个等距:

Ito积分
v中简单过程
随机变量

V V V中的范数是 ∥ ⋅ ∥ V \|\cdot\|_{V} V,随机变量看作是 L 2 ( P ) L^2(\mathbb{P}) L2(P)中的函数,则其的范数是 ( E [ ⋅ 2 ] ) 1 2 \left(\mathbb{E}\left[\cdot^2\right]\right)^{\frac{1}{2}} (E[2])21。在简单过程这个自变量的区域中Ito积分是个等距映射。】
:已经证明了 ( S k ) (S_k) (Sk)是柯西列,所以 E [ ( ∫ 0 ∞ Y ( t ) d W ( t ) ) 2 ] = lim ⁡ k → ∞ E [ S k 2

  • 2
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
使用Matlab模拟由分数布朗运动驱动的随机微分方程的均方指数稳定可以遵循以下步骤: 1. 安装并加载Fractional Brownian Motion Toolbox:可以从MathWorks网站上下载该工具箱并将其添加到Matlab的搜索路径中。 2. 定义随机微分方程:例如,可以定义一个由分数布朗运动驱动的随机微分方程为dX(t) = f(X(t))dt + g(X(t))dB_H(t),其中f(X(t))和g(X(t))是关于X(t)的已知函数,B_H(t)是分数布朗运动。 3. 使用Euler-Maruyama方法数值求解随机微分方程:Euler-Maruyama方法是一种常用的数值方法,用于模拟随机微分方程的数值解。该方法涉及使用离散化时间步长,将随机微分方程转换为差分方程,并使用递归迭代计算数值解。Matlab中可以使用“ode15s”或“ode45”等内置函数来实现数值求解。 4. 生成多个样本路径:可以使用“randn”函数生成多个独立的标准正态随机变量,并将它们用作分数布朗运动的输入,以生成多个样本路径。 5. 计算均方指数:可以计算每个样本路径的均方指数,并对它们进行平均,以得到随机微分方程的均方指数稳定的估计值。 下面是一个简单的Matlab示例,演示如何模拟一个由分数布朗运动驱动的随机微分方程,并计算其均方指数稳定的估计值: ```matlab % Load Fractional Brownian Motion Toolbox addpath('fbm_toolbox'); % Define parameters T = 1; % Time horizon N = 1000; % Number of time steps H = 0.5; % Hurst exponent mu = 0.1; % Mean reversion level sigma = 0.2; % Mean reversion rate X0 = 0; % Initial condition M = 100; % Number of sample paths % Define drift and diffusion functions f = @(X) mu - sigma*X; g = @(X) sigma; % Generate fractional Brownian motion input dt = T/N; % Time step size dB = fbm(N,H,M); % Fractional Brownian motion B = sqrt(dt)*cumsum(dB,2); % Standard Brownian motion % Define ODE function for Euler-Maruyama method odefun = @(t,X) f(X); sde = sde(odefun,g,'StartState',X0); % Solve SDE using Euler-Maruyama method X = zeros(M,N+1); % Sample paths X(:,1) = X0; for i = 1:N dW = B(:,i+1)-B(:,i); X(:,i+1) = X(:,i) + f(X(:,i))*dt + g(X(:,i)).*dW; end % Calculate mean square index MSI = mean(X(:,end).^2); disp(['Mean square index: ',num2str(MSI)]); ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值