python开发构建基于机器学习模型的番茄病虫害识别系统

文章探讨了使用传统机器学习模型SVM进行农作物病虫害识别的可能性,作为替代深度学习模型的方案。作者通过训练和测试数据集展示了SVM模型的识别效果,计算了准确率并绘制了混淆矩阵。此外,还开发了一个专用的可视化界面来呈现结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在我之前的文章中已经做过基于CNN的农作物病虫害识别系统,农作物的病虫害识别相比都不是什么新鲜的事情,以往这个问题绝大多数的方法都是基于CNN开发的深度学习的模型,后面又基于LSTM系列的模型也有开发过,但是基本上都是基于深度学习模型实现的识别,那么不禁就在想:如果纯粹基于基础的机器学习模型是否能够实现高效的识别呢?理论上来讲,只要特征提取的好,简单的机器学习模型应该也有不错的识别效果的,而且机器学习模型的推理速度有优势,如果精度ok,本身就是一个不错的选择。

话不多说,首先看下效果图:

完整项目截图如下所示:

数据集如下:

简单看下数据。

【Early_Blight_Fungus】

【Healthy】

【Septoria_Leaf_Spot_Fungus】

【YLCV_Virus】

整体建模流程如下所示:

这里是基于SVM实现的识别模型,核心实现如下:

#随机划分
X_train, X_test, y_train, y_test = splitData(x_list, y_list, ratio=0.3)
#模型初始化
model = LinearSVC()
#训练拟合
model.fit(X_train, y_train)
#预测
y_predict = model.predict(X_test)
y_pred = y_predict.tolist()
#计算准确率
accuracy = model.score(X_test, y_test)
print("SVM model accuracy: ", accuracy)
Precision,Recall,F1=calThree(y_test,y_pred)
saveModel(model,save_path=model_path)
result={}
result['accuracy'],result['F_value']=accuracy,F1
result['precision'],result['recall']=Precision,Recall
print('type: ', type(y_test), type(y_pred))
result['y_true'],result['y_pred']=y_test,y_pred
plotConfusionMatrix(y_test, y_pred, save_path = saveDir + 'ConfusionMatrix.png')

结果输出如下所示:

这里绘制了混淆矩阵,如下所示:

为了直观简洁实用,这里开发了专用的可视化界面,如下:

基于python农作物病虫害识别分类项目源码+数据集+使用说明.zip 主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者。也可作为课程设计、期末大作业。包含全部项目源码、该项目可以直接作为毕设使用。项目都经过严格调试,下载即用确保可以运行! 基于python农作物病虫害识别分类项目源码+数据集+使用说明.zip 主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者。也可作为课程设计、期末大作业。包含全部项目源码、该项目可以直接作为毕设使用。项目都经过严格调试,下载即用确保可以运行!基于python农作物病虫害识别分类项目源码+数据集+使用说明.zip 主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者。也可作为课程设计、期末大作业。包含全部项目源码、该项目可以直接作为毕设使用。项目都经过严格调试,下载即用确保可以运行!基于python农作物病虫害识别分类项目源码+数据集+使用说明.zip 主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者。也可作为课程设计、期末大作业。包含全部项目源码、该项目可以直接作为Python实现的农作物病虫害识别与分类项目代码及数据集说明Python实现的农作物病虫害识别与分类项目代码及数据集说明Python实现的农作物病虫害识别与分类项目代码及数据集说明Python实现的农作物病虫害识别与分类项目代码及数据集说明Python实现的农作物病虫害识别与分类项目代码及数据集说明Python实现的农作物病虫害识别与分类项目代码及数据集说明Python实现的农作物病虫害识别与分类项目代码及数据集说明Python实现的农作物病虫害识别与分类项目代码及数据集说明Python实现的农作物病虫害识别与分类项目代码及数据集说明Python实现的农作物病虫害识别与分类项目代码及数据集说明
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值