三维旋转矩阵;东北天坐标系(ENU);地心地固坐标系(ECEF);大地坐标系(Geodetic);经纬度对应圆弧距离

关注即可了解更多相关知识。
欢迎转发、收藏、友善交流。

旋转矩阵

Givens rotation 逆时针
[ c − s s c ] \begin{bmatrix}c &-s\\s &c\end{bmatrix} [cssc]
Jacobi rotation 顺时针
[ c s − s c ] \begin{bmatrix}c &s\\-s &c\end{bmatrix} [cssc]
箭头朝里朝外,顺时针、逆时针,旋转角的正负
高中物理 磁场方向 右手法则
左手系、右手系
左乘、右乘

左乘: 坐标系不动,点动,则左乘。
右乘: 点不动,坐标系动,则右乘。
【可以说,如果一个旋转矩阵左乘表示逆时针旋转 theta 角,那么将此矩阵右乘的话则表示顺时针旋转 theta 角】
左乘与右乘是可以变换的。也即是说: R l e f t ( θ ) = R r i g h t ( θ ) , R l e f t ⋅ R r i g h t = I R_{left}(\theta)=R_{right}(\theta),R_{left}\cdot R_{right}=I Rleft(θ)=Rright(θ),RleftRright=I

特殊欧氏群 S E ( n ) SE(n) SE(n) n n n维欧氏变换
特殊正交群 S O ( n ) SO(n) SO(n)旋转矩阵群
相似变换 S i m ( 3 ) Sim(3) Sim(3)
S O ( 3 ) SO(3) SO(3)三维空间的旋转
罗德里格斯公式 (Rodrigues’s Formula)
R T ( α ) = R − 1 ( α ) = R ( − α ) R^T(\alpha)=R^{-1}(\alpha)=R(-\alpha) RT(α)=R1(α)=R(α)

三角恒等式 Trigonometric identities

sin ⁡ θ = − sin ⁡ ( − θ ) = − cos ⁡ ( θ + 9 0 ∘ ) = cos ⁡ ( θ − 9 0 ∘ ) \sin \theta=-\sin (-\theta)=-\cos(\theta+90^\circ)=\cos(\theta-90^\circ) sinθ=sin(θ)=cos(θ+90)=cos(θ90)
cos ⁡ θ = cos ⁡ ( − θ ) = sin ⁡ ( θ + 9 0 ∘ ) = − sin ⁡ ( θ − 9 0 ∘ ) \cos \theta=\cos (-\theta)=\sin(\theta+90^\circ)=-\sin(\theta-90^\circ) cosθ=cos(θ)=sin(θ+90)=sin(θ90)

sin ⁡ ( θ 1 + θ 2 ) = s 1 c 2 + c 1 s 2 = s 12 \sin(\theta_1+\theta_2)=s_1c_2+c_1s_2=s_{12} sin(θ1+θ2)=s1c2+c1s2=s12
sin ⁡ ( θ 1 − θ 2 ) = s 1 c 2 − c 1 s 2 \sin(\theta_1-\theta_2)=s_1c_2-c_1s_2 sin(θ1θ2)=s1c2c1s2
cos ⁡ ( θ 1 + θ 2 ) = c 1 c 2 − s 1 s 2 = c 12 \cos(\theta_1+\theta_2)=c_1c_2-s_1s_2=c_{12} cos(θ1+θ2)=c1c2s1s2=c12
cos ⁡ ( θ 1 − θ 2 ) = c 1 c 2 + s 1 s 2 \cos(\theta_1-\theta_2)=c_1c_2+s_1s_2 cos(θ1θ2)=c1c2+s1s2

二维旋转矩阵

R ( θ ) = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] = cos ⁡ θ [ 1 0 0 1 ] + sin ⁡ θ [ 0 − 1 1 0 ] = exp ⁡ ( θ [ 0 − 1 1 0 ] ) R(\theta)={\begin{bmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \\\end{bmatrix}}=\cos \theta \begin{bmatrix}1 &0\\0 &1\\\end{bmatrix}+\sin \theta \begin{bmatrix}0 &-1\\1 &0\\\end{bmatrix}=\exp(\theta \begin{bmatrix}0 &-1\\1 &0\\\end{bmatrix}) R(θ)=[cosθsinθsinθcosθ]=cosθ[1001]+sinθ[0110]=exp(θ[0110])

三维旋转矩阵 Euler Rotations

R x ( θ x ) = [ 1 0 0 0 cos ⁡ θ x − sin ⁡ θ x 0 sin ⁡ θ x cos ⁡ θ x ] = exp ⁡ ( [ 0 0 0 0 0 − θ x 0 θ x 0 ] ) = r o l l R_{x}(\theta_x)={\begin{bmatrix}1 &0 &0\\0 &\cos \theta_x &-\sin \theta_x \\0 &\sin \theta_x &\cos \theta_x \\\end{bmatrix}}=\exp(\begin{bmatrix}0 &0 &0\\0 &0 &-\theta_x\\0 &\theta_x &0\end{bmatrix})=roll Rx(θx)=1000cosθxsinθx0sinθxcosθx=exp(00000θx0θx0)=roll

R y ( θ y ) = [ cos ⁡ θ y 0 sin ⁡ θ y 0 1 0 − sin ⁡ θ y 0 cos ⁡ θ y ] = exp ⁡ ( [ 0 0 θ y 0 0 0 − θ y 0 0 ] ) = p i t c h R_{y}(\theta_y )={\begin{bmatrix}\cos \theta_y &0&\sin \theta_y \\0&1&0\\-\sin \theta_y &0&\cos \theta_y \\\end{bmatrix}}=\exp(\begin{bmatrix}0 &0 &\theta_y\\0 &0 &0\\-\theta_y &0 &0\end{bmatrix})=pitch Ry(θy)=cosθy0sinθy010sinθy0cosθy=exp(00θy000θy00)=pitch

R z ( θ z ) = [ cos ⁡ θ z − sin ⁡ θ z 0 sin ⁡ θ z cos ⁡ θ z 0 0 0 1 ] = exp ⁡ ( [ 0 − θ z 0 θ z 0 0 0 0 0 ] ) = y a w R_{z}(\theta_z )={\begin{bmatrix}\cos \theta_z &-\sin \theta_z &0\\\sin \theta_z &\cos \theta_z &0\\0&0&1\\\end{bmatrix}}=\exp(\begin{bmatrix}0 &-\theta_z &0\\\theta_z &0 &0\\0 &0 &0\end{bmatrix})=yaw Rz(θz)=cosθzsinθz0sinθzcosθz0001=exp(0θz0θz00000)=yaw

M = R z ( θ z ) R y ( θ y ) R x ( θ x ) = exp ⁡ ( [ 0 − θ z θ y θ z 0 − θ x − θ y θ x 0 ] ) M=R_z(\theta_z)R_y(\theta_y)R_x(\theta_x)=\exp(\begin{bmatrix}0 &-\theta_z &\theta_y\\\theta_z &0 &-\theta_x\\-\theta_y &\theta_x &0\end{bmatrix}) M=Rz(θz)Ry(θy)Rx(θx)=exp(0θzθyθz0θxθyθx0)

matlab

eul = [0 pi/2 0]; % z y x
rotmZYX = eul2rotm(eul)

微分旋转矩阵

M 0 = [ 1 − θ z θ y θ z 1 − θ x − θ y θ x 1 ] M_0=\begin{bmatrix}1 &-\theta_z &\theta_y\\\theta_z &1 &-\theta_x\\-\theta_y &\theta_x &1\end{bmatrix} M0=1θzθyθz1θxθyθx1

“偏航-俯仰-滚转”(yaw-pitch-roll)

1.绕物体的Z 轴旋转, 得到偏航角yaw;
2.绕旋转之后 的Y 轴旋转, 得到俯仰角pitch;
3.绕旋转之后 的X 轴旋转, 得到滚转角roll。

东北天、站心坐标系

Local east, north, up (ENU) coordinates

R z ( + ( 90 + L ) ) R x ( + ( 90 − B ) ) R_z(+(90+L))R_x(+(90-B)) Rz(+(90+L))Rx(+(90B))
R x ( − ( 90 − B ) ) R z ( − ( 90 + L ) ) R_x(-(90-B))R_z(-(90+L)) Rx((90B))Rz((90+L)) 正 右乘

R = [ − sin ⁡ λ − sin ⁡ ϕ cos ⁡ λ cos ⁡ ϕ cos ⁡ λ cos ⁡ λ − sin ⁡ ϕ sin ⁡ λ cos ⁡ ϕ sin ⁡ λ 0 cos ⁡ ϕ sin ⁡ ϕ ] {\displaystyle R={\begin{bmatrix}-\sin \lambda &-\sin \phi \cos \lambda &\cos \phi \cos \lambda \\\cos \lambda &-\sin \phi \sin \lambda &\cos \phi \sin \lambda \\0&\cos \phi &\sin \phi \end{bmatrix}}} R=sinλcosλ0sinϕcosλsinϕsinλcosϕcosϕcosλcosϕsinλsinϕ

Local north, east, down (NED) coordinates

R z ( + L ) R y ( − ( 90 + B ) ) R_z(+L)R_y(-(90+B)) Rz(+L)Ry((90+B))
R y ( + ( 90 + B ) ) R z ( − L ) R_y(+(90+B))R_z(-L) Ry(+(90+B))Rz(L) 正 右乘

R = [ − sin ⁡ ( ϕ ) cos ⁡ ( λ ) − sin ⁡ ( λ ) − cos ⁡ ( ϕ ) cos ⁡ ( λ ) − sin ⁡ ( ϕ ) sin ⁡ ( λ ) cos ⁡ ( λ ) − cos ⁡ ( ϕ ) sin ⁡ ( λ ) cos ⁡ ( ϕ ) 0 − sin ⁡ ( ϕ ) ] {\displaystyle R={\begin{bmatrix}-\sin(\phi )\cos(\lambda )&-\sin(\lambda )&-\cos(\phi )\cos(\lambda )\\-\sin(\phi )\sin(\lambda )&\cos(\lambda )&-\cos(\phi )\sin(\lambda )\\\cos(\phi )&0&-\sin(\phi )\end{bmatrix}}} R=sin(ϕ)cos(λ)sin(ϕ)sin(λ)cos(ϕ)sin(λ)cos(λ)0cos(ϕ)cos(λ)cos(ϕ)sin(λ)sin(ϕ)

Matlab

3-D Coordinate and Vector Transformations
geodetic2enu
enu2geodetic

Geodetic and ECEF Coordinate Systems

BLH2XYZ
Geodetic coordinates (latitude   ϕ {\displaystyle\ \phi }  ϕ, longitude   λ {\displaystyle \ \lambda }  λ, height h {\displaystyle h} h) can be converted into ECEF coordinates using the following equation:

X = ( N ( ϕ ) + h ) cos ⁡ ϕ cos ⁡ λ Y = ( N ( ϕ ) + h ) cos ⁡ ϕ sin ⁡ λ Z = ( b 2 a 2 N ( ϕ ) + h ) sin ⁡ ϕ {\displaystyle {\begin{aligned}X&=\left(N(\phi )+h\right)\cos {\phi }\cos {\lambda }\\Y&=\left(N(\phi )+h\right)\cos {\phi }\sin {\lambda }\\Z&=\left({\frac {b^{2}}{a^{2}}}N(\phi )+h\right)\sin {\phi }\end{aligned}}} XYZ=(N(ϕ)+h)cosϕcosλ=(N(ϕ)+h)cosϕsinλ=(a2b2N(ϕ)+h)sinϕ
where
N ( ϕ ) = a 2 a 2 cos ⁡ 2 ϕ + b 2 sin ⁡ 2 ϕ = a 1 − e 2 sin ⁡ 2 ϕ , {\displaystyle N(\phi )={\frac {a^{2}}{\sqrt {a^{2}\cos ^{2}\phi +b^{2}\sin ^{2}\phi }}}={\frac {a}{\sqrt {1-e^{2}\sin ^{2}\phi }}},} N(ϕ)=a2cos2ϕ+b2sin2ϕ a2=1e2sin2ϕ a,
其中
e 2 = 1 − b 2 a 2 {\displaystyle e^{2}=1-{\frac {b^{2}}{a^{2}}}} e2=1a2b2

{ B = arctan ⁡ [ z e + ( e ′ ) 2 ⋅ b ⋅ sin ⁡ 3 U x e 2 + y e 2 − a ⋅ e 2 ⋅ cos ⁡ 3 U ] L = arctan ⁡ y e x e H = x e 2 + y e 2 cos ⁡ B − N \left\{\begin{array}{l}B=\arctan \left[\frac{z_{e}+\left(e^{\prime}\right)^{2} \cdot b \cdot \sin ^{3} U}{\sqrt{x_{e}^{2}+y_{e}^{2}}-a \cdot e^{2} \cdot \cos ^{3} U}\right]\\\\L=\arctan \frac{y_e}{x_e}\\\\H=\frac{\sqrt{x_{e}^{2}+y_{e}^{2}}}{\cos B}-N\\\end{array}\right. B=arctan[xe2+ye2 ae2cos3Uze+(e)2bsin3U]L=arctanxeyeH=cosBxe2+ye2 N

当大地高 H < 1000 k m H<1000km H<1000km 时,上式的计算精度可达厘米级。但当大地高过大时,纬度计算精度将下降,且大地高H的计算稳定性也会下降。为此 Bowring于1985年又给出下列改进公式:

[ bowring1985 ] THE ACCURACY OF GEODETIC LATITUDE AND HEIGHT EQUATIONS

用上式计算时纬度的精度可达 1 ′ ′ × 1 0 − 7 1''\times10^{-7} 1×107 ,大地高的误差小于 1 0 − 6 c m 10^{-6}cm 106cm ,可满足
各种用户的要求。注意上式主要用于高精度的大地测量计算等应用场合,而对于导航来讲之前的公式一般即可满足要求。

经纬度 对应 圆弧距 arc distance

Δ lat 1 = π a ( 1 − e 2 ) 18 0 ∘ ( 1 − e 2 sin ⁡ 2 ϕ ) 3 2 {\displaystyle \Delta _{\text{lat}}^{1}={\frac {\pi a\left(1-e^{2}\right)}{180^{\circ }\left(1-e^{2}\sin ^{2}\phi \right)^{\frac {3}{2}}}}} Δlat1=180(1e2sin2ϕ)23πa(1e2)

WGS84 spheroid

Δ lat 1 = 111   132.954 − 559.822 cos ⁡ 2 ϕ + 1.175 cos ⁡ 4 ϕ {\displaystyle \Delta _{\text{lat}}^{1}=111\,132.954-559.822\cos 2\phi +1.175\cos 4\phi } Δlat1=111132.954559.822cos2ϕ+1.175cos4ϕ

Δ long 1 = π a cos ⁡ ϕ 18 0 ∘ 1 − e 2 sin ⁡ 2 ϕ   {\displaystyle \Delta _{\text{long}}^{1}={\frac {\pi a\cos \phi }{180^{\circ }{\sqrt {1-e^{2}\sin ^{2}\phi }}}}\,} Δlong1=1801e2sin2ϕ πacosϕ

ϕ \phi ϕ Δ lat 1 \Delta _{\text{lat}}^{1} Δlat1 Δ long 1 \Delta _{\text{long}}^{1} Δlong1
110.574 km111.320 km
15°110.649 km107.550 km
30°110.852 km96.486 km
45°111.132 km78.847 km
60°111.412 km55.800 km
75°111.618 km28.902 km
90°111.694 km0.000 km

( d X d Y d Z ) = ( − sin ⁡ λ − sin ⁡ ϕ cos ⁡ λ cos ⁡ ϕ cos ⁡ λ cos ⁡ λ − sin ⁡ ϕ sin ⁡ λ cos ⁡ ϕ sin ⁡ λ 0 cos ⁡ ϕ sin ⁡ ϕ ) ( d E d N d U ) , ( d E d N d U ) = ( ( N ( ϕ ) + h ) cos ⁡ ϕ 0 0 0 M ( ϕ ) + h 0 0 0 1 ) ( d λ d ϕ d h ) , {\displaystyle {\begin{aligned}{\begin{pmatrix}dX\\dY\\dZ\end{pmatrix}}&={\begin{pmatrix}-\sin \lambda &-\sin \phi \cos \lambda &\cos \phi \cos \lambda \\\cos \lambda &-\sin \phi \sin \lambda &\cos \phi \sin \lambda \\0&\cos \phi &\sin \phi \\\end{pmatrix}}{\begin{pmatrix}dE\\dN\\dU\end{pmatrix}},\\[3pt]{\begin{pmatrix}dE\\dN\\dU\end{pmatrix}}&={\begin{pmatrix}\left(N(\phi )+h\right)\cos \phi &0&0\\0&M(\phi )+h&0\\0&0&1\\\end{pmatrix}}{\begin{pmatrix}d\lambda \\d\phi \\dh\end{pmatrix}},\end{aligned}}} dXdYdZdEdNdU=sinλcosλ0sinϕcosλsinϕsinλcosϕcosϕcosλcosϕsinλsinϕdEdNdU,=(N(ϕ)+h)cosϕ000M(ϕ)+h0001dλdϕdh,

M ( ϕ ) = a ( 1 − e 2 ) ( 1 − e 2 sin ⁡ 2 ϕ ) 3 2 {\displaystyle M(\phi )={\frac {a\left(1-e^{2}\right)}{\left(1-e^{2}\sin ^{2}\phi \right)^{\frac {3}{2}}}}} M(ϕ)=(1e2sin2ϕ)23a(1e2)

[ x y z ] = [ E N U ] \begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}E\\N\\U\end{bmatrix} xyz=ENU

地心坐标系

大地坐标系(φ,λ,h)纬度、经度、高度,geodetic
地心地固坐标系(Earth-Centered, Earth-Fixed,简称ECEF)简称地心坐标系
WGS-84椭球模型

From ECEF to ENU

先绕z轴正向 逆时针 旋转 90+L, 再绕x轴 顺时针 旋转 90-B. -号表示为右乘:点不动,坐标系动
R x ( − ( 90 − B ) ) R z ( − ( 90 + L ) ) = [ − sin ⁡ L cos ⁡ L 0 − sin ⁡ B cos ⁡ L − sin ⁡ B sin ⁡ L cos ⁡ B cos ⁡ B cos ⁡ L cos ⁡ B sin ⁡ L sin ⁡ B ] R_x(-(90-B))R_z(-(90+L))={\begin{bmatrix}-\sin L&\cos L&0\\-\sin B\cos L&-\sin B\sin L&\cos B\\\cos B\cos L&\cos B\sin L&\sin B\end{bmatrix}} Rx((90B))Rz((90+L))=sinLsinBcosLcosBcosLcosLsinBsinLcosBsinL0cosBsinB 正 右乘

R x ( − ( 90 − B ) ) = [ 1 0 0 0 cos ⁡ ( B − 90 ) − sin ⁡ ( B − 90 ) 0 sin ⁡ ( B − 90 ) cos ⁡ ( B − 90 ) ] = [ 1 0 0 0 sin ⁡ B cos ⁡ B 0 − cos ⁡ B sin ⁡ B ] {\displaystyle R_x(-(90-B))= {\begin{bmatrix}1 &0 &0\\0 &\cos(B-90) &-\sin(B-90) \\0 &\sin(B-90) &\cos(B-90)\end{bmatrix}}= {\begin{bmatrix}1 &0 &0\\0 &\sin B &\cos B \\0 &-\cos B &\sin B\end{bmatrix}}} Rx((90B))=1000cos(B90)sin(B90)0sin(B90)cos(B90)=1000sinBcosB0cosBsinB

R z ( − ( 90 + L ) ) = [ cos ⁡ ( L + 90 ) sin ⁡ ( L + 90 ) 0 − sin ⁡ ( L + 90 ) cos ⁡ ( L + 90 ) 0 0 0 1 ] = [ − sin ⁡ L cos ⁡ L 0 − cos ⁡ L − sin ⁡ L 0 0 0 1 ] {\displaystyle R_z(-(90+L))={\begin{bmatrix}\cos(L+90) &\sin(L+90) &0 \\ -\sin(L+90) &\cos(L+90) &0\\ 0 &0 &1\end{bmatrix}}={\begin{bmatrix}-\sin L &\cos L &0 \\ -\cos L &-\sin L &0\\ 0 &0 &1\end{bmatrix}}} Rz((90+L))=cos(L+90)sin(L+90)0sin(L+90)cos(L+90)0001=sinLcosL0cosLsinL0001

[ x y z ] = [ − sin ⁡ λ r cos ⁡ λ r 0 − sin ⁡ ϕ r cos ⁡ λ r − sin ⁡ ϕ r sin ⁡ λ r cos ⁡ ϕ r cos ⁡ ϕ r cos ⁡ λ r cos ⁡ ϕ r sin ⁡ λ r sin ⁡ ϕ r ] [ X p − X r Y p − Y r Z p − Z r ] {\displaystyle {\begin{bmatrix}x\\y\\z\end{bmatrix}}={\begin{bmatrix}-\sin \lambda _{r}&\cos \lambda _{r}&0\\-\sin \phi _{r}\cos \lambda _{r}&-\sin \phi _{r}\sin \lambda _{r}&\cos \phi _{r}\\\cos \phi _{r}\cos \lambda _{r}&\cos \phi _{r}\sin \lambda _{r}&\sin \phi _{r}\end{bmatrix}}{\begin{bmatrix}X_{p}-X_{r}\\Y_{p}-Y_{r}\\Z_{p}-Z_{r}\end{bmatrix}}} xyz=sinλrsinϕrcosλrcosϕrcosλrcosλrsinϕrsinλrcosϕrsinλr0cosϕrsinϕrXpXrYpYrZpZr

From ENU to ECEF

R z ( + ( 90 + L ) ) R x ( + ( 90 − B ) ) R_z(+(90+L))R_x(+(90-B)) Rz(+(90+L))Rx(+(90B))
[ X Y Z ] = [ − sin ⁡ λ − sin ⁡ ϕ cos ⁡ λ cos ⁡ ϕ cos ⁡ λ cos ⁡ λ − sin ⁡ ϕ sin ⁡ λ cos ⁡ ϕ sin ⁡ λ 0 cos ⁡ ϕ sin ⁡ ϕ ] [ x y z ] + [ X r Y r Z r ] {\displaystyle {\begin{bmatrix}X\\Y\\Z\end{bmatrix}}={\begin{bmatrix}-\sin \lambda &-\sin \phi \cos \lambda &\cos \phi \cos \lambda \\\cos \lambda &-\sin \phi \sin \lambda &\cos \phi \sin \lambda \\0&\cos \phi &\sin \phi \end{bmatrix}}{\begin{bmatrix}x\\y\\z\end{bmatrix}}+{\begin{bmatrix}X_{r}\\Y_{r}\\Z_{r}\end{bmatrix}}} XYZ=sinλcosλ0sinϕcosλsinϕsinλcosϕcosϕcosλcosϕsinλsinϕxyz+XrYrZr

可根据BLH、DAE求BLH,

[lat,lon,h] = aer2geodetic(az,elev,slantRange,lat0,lon0,h0,spheroid)

参考文献

  • GIS Fundamentals A First Text on Geographic Information Systems by Paul Bolstad
  • Small Unmanned Aircraft Theory and Practice by Randal W. Beard, Timothy W. McLain 小型无人机理论与应用
  • Unmanned Rotorcraft Systems by Guowei Cai, Ben M. Chen, Tong Heng Lee
  • [ bowring1985 ] THE ACCURACY OF GEODETIC LATITUDE AND HEIGHT EQUATIONS

赞赏

如果你觉得以上内容对你有帮助,欢迎赞赏、转发!

心地ECEF坐标系东北ENU坐标系是两种常用的地理坐标系,用于描述物体的位置和方向。它们之间可以进行坐标转换。 地心地坐标系是以地球中心为原点,以地球自转轴为Z轴建立的坐标系。它的X轴指向经度为0度的子午线,Y轴指向经度为90度的子午线,Z轴垂直于地球表面向上。地心地坐标系可以直接通过地球球面坐标(经度、纬度、高度)与直角坐标系(X轴、Y轴、Z轴)进行转换。 东北坐标系是与特定位置相关的本地坐标系,它的X轴指向东方,Y轴指向北方,Z轴垂直于地表向上。在东北坐标系中,物体的位置和方向是相对于参考点而言的。 坐标系的转换可以通过旋转、平移和缩放等变换来实现。具体做法是先将地心地坐标系中的点转换为地球上某一特定点的局部东北坐标系中的点,再通过旋转将该点转换为目标位置的本地东北坐标系中的点。 转换的具体步骤是先确定参考点的经纬度坐标以及在地心地坐标系中的坐标,然后计算出地心地坐标系中参考点到目标点的旋转角度和缩放比例,最后将地心地坐标系中的点进行旋转平移与缩放变换,得到目标位置的东北坐标系中的点坐标。 通过地心地坐标系东北坐标系的转换,我们可以方便地描述物体在空间中的位置和方向,应用于导航、航空、航等领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值