矩阵分析——第一章 线形空间和线性变换

第一节 什么叫线性空间

参考:《矩阵分析》史荣昌 老师的PPT 历年真题

  • 本节第一个定义:

设 V 是一个非空集合,在集合里的元素之间定义了加法,在元素 与 实数或复数之间定义了数乘;加法和数乘的结果仍然在集合内(并且满足加法和数乘的八条常规性质,结合律 分配律 交换律之类的)           

我们就称这样的集合V是线性空间

  • 矩阵的核空间或叫零空间是什么?

就是 AX = 0  的解的空间

  • 向量(矩阵)的线性相关与线性无关?

线性相关就是 某一个向量(矩阵)可以被其他向量线性表示

线性无关就是 所有向量的线性组合=0 只有每个系数都为零才成立

P5 例1.1.11  例1.1.12

第二节 基与坐标变换

  • 什么是基?

一个集合V的最大线性无关组;

P7 例1.2.2

  • 怎么求一个向量在某个指定的基下的坐标?

设系数为ki;列出此向量=基的线性组合的表示

P7 例1.2.3 例1.2.4

  • 基变换是什么?

基不是唯一的,但是组成基的向量(矩阵)个数是一定的;基1 和 基2 之间可以相互转换

A = BP (P叫做过渡矩阵)

  • 什么叫坐标变换

比如某个向量在基1的坐标是(x1,x2,x3);

告诉你基1到基2的过渡矩阵是P

问你这个向量在基2的坐标是?

(y1,y2,y3) = P的逆 (x1,x2,x3)

第三节 线性子空间

  • 子空间

子集合属于V;但空间维数小于等于V的空间,叫做子空间

注意:一般说空间的维数是指 集合里元素之间的最大无关组;说元素的维数才是 向量(矩阵)的元素个数。

  • 平凡子空间

零或者V本身 这两个都叫做平凡子空间

  • 生成子空间

就是从V中选几个向量(矩阵);表示为:span{a1,a2,a3,a4}

当然,最好的表示应该是 span{ a1,a2,a3,a4的最大无关组即可 }

P13  例1.3.2

  • 子空间的交,和

V1 n V2 的意思就是,一个向量即属于V1也属于V2.

和空间,其实定义都和集合的交并差不多;关键做这几个题目:

P14 例1.3.3 例1.3.4 例 1.3.5 例子1.3.6 例1.3.7

  • 子空间之间的维数关系

dim V1 + dim V2 = dim(V1+V2) + dim(V1 n V2)

  • 子空间的 直和, 补子空间

直和就是两个子空间构成了整个空间,(相当于集合中对立关系)

代数补空间是不唯一的;就是所V可以分成 V1 +V2也可以分为 V2 +V3.

 

第四节 线性映射

  • 线性映射就是 V1 经过 一个线性性质的映射到 V2这个空间去了。
  • 线性映射的矩阵表示:v1的一组基的映射,就是 v2 的基乘于一个A矩阵,这个A矩阵就是 线性映射的矩阵表示。
  • 线性映射的坐标关系:一个在v1空间的向量,它在它的基下的坐标是x,x,x,x;    做线性映射后,它的坐标在 V2的一个基的坐标是:y = A*x

p 23 例1.4.7 例1.4.8

  • 在v1 和 v2的基都发生变化的时候, 线性映射的矩阵 A 也发生变化了,但是这个变化后的映射矩阵 B = Q的逆 AP

p是V1的过渡矩阵,Q是v2的过渡矩阵。

第五节 线性映射的值域 核

  • 值域

现在研究 V1 到 V2 的线性映射;(请翻开教材的26页看最顶端);那个符号就是值域符号;记住值域就是V1的基经过映射后的结果的张量;

就相当于 映射矩阵的解空间

  • 所以有 dim(N(A)) + dim(A) = n   ; n是v1的维度。

p 28 例 1.5.2

本章练习题汇总:

p52

1   3  5  6  7  8  10  14 15  16  21 23

把第一章的历年真题做完。

 

 

 

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值