最详细的Ubuntu服务器搭建Stable-Diffusion教程(无显卡,仅用CPU)

1. 首先安装基本工具

# 安装python环境
sudo apt install wget git

若已经安装过请忽略

2. 安装miniconda(也可以自己下载python)

下载最新的安装包

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

执行安装

./Miniconda3-latest-Linux-x86_64.sh

一路回车,遇到选择就yes(切记要yes,不然要手动添加环境变量)
刷新环境

source .bashrc

此时命令行输入python,看到是3.10版本的就对了

(base) root@localhost:~# python
Python 3.10.9 (main, Jan 11 2023, 15:21:40) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 

后续步骤可以用conda新建一个虚拟环境进行,我的服务器是临时的,所以就直接在base环境下进行了

3. git拉取项目到本地

执行

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

进入项目目录下

cd stable-diffusion-webui/

4. 安装对应Python依赖包

首先安装pytorchtorchvision,若是GPU环境的用户需要安装与cuda版本对应的torch,cpu环境则无具体要求

pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117

然后给pip换上中科大的源,也可以换清华源或阿里源

pip config set global.index-url https://mirrors.ustc.edu.cn/pypi/web/simple

接着安装对应依赖

pip install -r requirements_versions.txt

5. 从huggingface下载预训练模型参数

进入模型存放对应目录

cd models/Stable-diffusion/

下载一个模型,这里可以根据自己的需要下载

wget https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4-full-ema.ckpt

6. 启动项目

到这一步网上很多方法都是直接执行根目录下的webui.sh,我执行时有报错,就换了一种方式

回到项目根目录,执行launch.py文件,启动web服务,并指定监听端口为1234(端口号随意)

python3 launch.py --port 1234 --listen

若为cpu环境,则需提前执行

export COMMANDLINE_ARGS=--skip-torch-cuda-test

并且在运行时加入no-half

python3 launch.py --no-half --port 1234 --listen

启动后安装很多依赖以及克隆相应github仓库,过程有报错的可以看附录解决方案并重新执行这一步
若出现以下内容则说明启动成功

此时访问http://127.0.0.1:1234即可使用

7. 公网访问

若想让服务能在公网上被其他用户访问,则需进入weibu.py文件,修改对应代码,将shared.demo.launch()第一行参数改为share=True。

然后重新启动项目,此时能看到公网地址,说明成功

访问以上临时的公网地址就可以让别人也使用你的AI作图了

8. 汉化扩展

在任意目录下克隆中文扩展地址

git clone https://github.com/VinsonLaro/stable-diffusion-webui-chinese

进入下载好的文件夹,把localizations文件夹内的Chinese-All.jsonChinese-English.json复制到stable-diffusion-webui\localizations目录下,如下

启动web服务后,点击Settings,左侧点击User interface界面,在界面里最下方的Localization (requires restart),选择Chinese-All或者Chinese-English,点击界面最上方的黄色按钮Apply settings,再点击右侧的Reload UI即可完成汉化。


汉化后的页面

附:遇到的错误

  1. 报错RuntimeError: Couldn’t clone Stable Diffusion。
    解决办法:手动clone
git clone https://github.com/Stability-AI/stablediffusion.git "/root/stable-diffusion-webui/repositories/stable-diffusion-stability-ai"
  1. 报错gnutls_handshake() failed: The TLS connection was non-properly terminated
    解决办法:在执行时使用http而不是https,替换
git clone https://github.com/Stability-AI/stablediffusion.git

git clone http://github.com/Stability-AI/stablediffusion.git
  1. 报错RuntimeError: Couldn’t install open_clip。安装open_clip失败
    解决办法:进入launch.py文件,找到openclip_package 部分代码,修改对应部分代码为
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://gitee.com/ufhy/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b")
### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值