【凸优化笔记一】仿射集+凸集+锥

引言

最近开始接触凸优化问题,发现自己这块知识点处于零散的认知阶段,所以配合着哔站上的课程,以及相应配套的书籍进行学习。
哔站链接传送门:中科大-凸优化
推荐的书籍有以下三本:
Convex Optimization Stephen Boyd, Lieven Vandenberghe
Nonlinear Programming, Second Edition Dimitri Bertsekas
Parallel and Distributed Computation:Numerical Methods Dimitri Bersekas, John Tsitsiklis

接下来的学习以及引用也主要来自于这三本书。

直线&线段

直线和线段是我们自从接触小学初中的几何问题以来,最常见也是最基本的概念,为什么在这里还需要重新提一下这两个概念呢?
首先,正是因为其基础,方便大家形成螺旋式上升的模式;其次,这两个概念必然为后续的一些概念打下了铺垫和引理的作用;最后,请用数学的语言来表达高维空间上的直线和线段的定义。(这里思考片刻,曾经在初高中时期,我们应该是学习过二维平面上的直线的定义的吧,试试能够完整的写下来)

直线的定义

{ X 1 ≠ X 2 ∈ R n , θ ∈ R , Y = θ X 1 + ( 1 − θ ) X 2 = X 2 + θ ( X 1 − X 2 ) , \begin{equation} \left\{ \begin{array}{lr} X_1 \neq X_2 \in R^n, & \\ \theta \in R,& \\ Y=\theta X_1+(1-\theta)X_2=X_2+\theta (X_1-X_2), & \end{array} \right. \end{equation} X1=X2Rn,θR,Y=θX1+(1θ)X2=X2+θ(X1X2),

线段的定义

由于线段是直线的一部分,所以仅需在直线的定义下稍加限制即可满足线段定义
{ X 1 ≠ X 2 ∈ R n , θ ∈ R , θ ∈ [ 0 , 1 ] Y = θ X 1 + ( 1 − θ ) X 2 = X 2 + θ ( X 1 − X 2 ) , \begin{equation} \left\{ \begin{array}{lr} X_1 \neq X_2 \in R^n, & \\ \theta \in R,\theta \in [0,1]& \\ Y=\theta X_1+(1-\theta)X_2=X_2+\theta (X_1-X_2), & \end{array} \right. \end{equation} X1=X2Rn,θR,θ[0,1]Y=θX1+(1θ)X2=X2+θ(X1X2),

仿射集 Affine Sets

正式进入正文,仿射集,有以下定义形式
在这里插入图片描述一个集合C是仿射集,若 ∀ X 1 , X 2 ∈ C {\forall}X_1, X_2\in C X1,X2C,则连接 X 1 , X 2 X_1, X_2 X1,X2的直线也在集合中;换言之,线性组合两点(可以思考成向量)依然在集合C中。
以上定义,可被扩大为 X 1 , . . . , X k X_1, ..., X_k X1,...,Xk的仿射组合。

与C相关的子空间

由于往往在现实问题中,当得到某仿射集后,认为性质不够好,可以通过减掉其集合中的一个元素,即可获得与C相关的子空间,V。由此不再收到仿射集定义中1的限制
以下是定义及其证明
在这里插入图片描述

线性方程组的解集是仿射集

以下是证明过程
在这里插入图片描述上图中最后一句也说明了,小标题是一充分必要条件。

零空间

结合以上的与C相关的子空间V以及线性方程组的解集是仿射集,可以有以下推演
在这里插入图片描述
值得注意的是,V中任意元素都是A的零空间。

仿射包 Affine Hull

任意集合C,构成尽可能小的仿射集,即为仿射包
在这里插入图片描述

凸集 Convex Set

一个集合C是凸集,当任意两点之间的线段仍在C内。
在这里插入图片描述

其中,值得注意的是,仿射集是凸集的特例。以二维平面上的一个圆为例,不难发现,圆是凸集,但不是仿射集。这里可以简易的认为,需要满足凸集的要求比仿射集低,所以仿射集是凸集的特例,仿射集一定是凸集,凸集不一定是仿射集。从定义角度的需要包含的直线和线段中,也可以说明两者的关系。
在这里插入图片描述

凸包 Convex Hull

在这里插入图片描述

书里面,在对凸包定义的时候,看似没有对 θ \theta θ上限进行范围限制;不过在根据二维定义或者多维中的所有 θ \theta θ之和为1,可以推算出来 θ \theta θ限制在0~1之间。
以下是针对一个集合,所构建的凸包

在这里插入图片描述

锥 Cone

C是锥的定义
∀ X ∈ C , θ ≥ 0 , 有 θ X ∈ C \forall X\in C,\theta \geq0,有\theta X\in C XC,θ0,θXC
C是凸锥的定义
∀ X 1 , X 2 ∈ C , θ 1 , θ 2 ≥ 0 , 有 θ 1 X 1 + θ 2 X 2 ∈ C \forall X_1,X_2\in C,\theta _1,\theta _2\geq0,有\theta _1X_1+\theta _2X_2\in C X1,X2C,θ1,θ20,θ1X1+θ2X2C
在这里插入图片描述

凸锥包

在这里插入图片描述
以下是针对一个集合,所构建的凸锥包
在这里插入图片描述

总结

以上主要是对仿射集、凸集、凸锥等概念及其广义化性质进行展示,并且通过几个典型的例子加以说明三者的区别。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值