【凸优化】仿射,仿射集,凸集,Jensen不等式

1 定义和基本概念

1.0 直线的空间参数方程

  • A,B,M三点共线\underset{MA}{\rightarrow} =t* \underset{MB}{\rightarrow} ( t \in R)
  • 直线的参数方程:给定一个定点A和向量\underset{a}{\rightarrow},则\underset{AP}{\rightarrow} = t*\underset{a}{\rightarrow}(t \in R)

\underset{OP}{\rightarrow} = \underset{OA}{\rightarrow} + t*\underset{a}{\rightarrow}  ,取\underset{a}{\rightarrow} = \underset{AB}{\rightarrow},则\underset{OP}{\rightarrow} = \underset{OA}{\rightarrow} + t * \underset{AB} {\rightarrow} = \underset{OA}{\rightarrow} + t* (\underset{OA}{\rightarrow} - \underset{OB}{\rightarrow}) = t *\underset{OB}{\rightarrow} + (1-t) * \underset{OA}{\rightarrow}

 

1.1 直线和线段

如果X{_1} \neq X{_2} \in R^{n},则经过两点的直线可表示为:

Y = X{_1} + (1-\theta )X{_2}, \theta \in R^{n}

或:

Y = X{_2} + \theta (X{_2}-X{_1}), \theta \in R^{n}

如果0<\theta <1,则表示为线段。

1.2 仿射

如果通过集合C\in R^{n}的两个不同的点的直线,仍在C中,则称C是仿射。也就是仿射等价于

如果X{_1},X{_2} \in C ,

那么直线Y = X{_2} + \theta (X{_2}-X{_1}) \in C

1.3 仿射集

仿射的概念可以推广到n个点,即,其中\theta{_1}{x_1}+\theta{_2}{x_2}+...+\theta{_n}{x_n}。从属于C中点钟选择k个点,构成的\theta_1{x_1}+\theta_2{x_2}+...+\theta_k{x_k}也称为仿射组合

仿射集包含了集合内点的所有仿射组合。

1.4 凸和凸集

凸(convex):对于集合C\subseteq{R^n},如果通过集合C中任意两个不同点之间的线段(注意啦!是线段了)仍在集合C中,则称集合C为凸(convex)。

凸组合\theta_1{x_1}+\theta_2{x_2}+...+\theta_n{x_n}的点,其中\theta_i\geq 0,\theta_1+\theta_2+...+\theta_n=1,则称点x_1,x_2,...,x_n称为凸组合。

凸集:该集合包含了所有点的凸组合

1.5 凸函数

凸函数:设f(x) 为定义在n维欧氏空间 中某个凸集 上的函数,若对任意实数\theta(0< \theta <1)以及 中的任意两点和x{_1},x{_2},恒有:

\theta f(x{_1}) + (1- \theta)f(x{_2}) \geqslant f(\theta x{_1} + (1- \theta)x{_2})

则f(x)称为定义在凸集上的凸函数。

 

凹凸函数本质是描述函数斜率增减的。语义上凸为正,代表斜率在增加(单调不减)。凹为负,代表斜率在减少。

2 凸函数性质和 Jensen不等式

2.1 图

2.2 Jensen不等式理解

Jensen不等式就是就是凸函数的定义。直观上看就是a到b的弦(线段)在函数f(x)上方。

凸函数定义:\theta f(x{_1}) + (1- \theta)f(x{_2}) \geqslant f(\theta x{_1} + (1- \theta)x{_2}) (0 < \theta < 1)

根据1.1,经过x{_1}, x{_2}两点的直线为(空间向量形式):\theta f(x{_1}) + (1- \theta)f(x{_2}),限定(0 < \theta < 1),表示只是线段上的点大于函数值f(x)。

推广到多个点:

\theta{_1} f(x{_1}) + \theta{_2} f(x{_2}) + \theta{_3} f(x{_3}) + ...\theta{_n} f(x{_n}) \geqslant f(\theta{_1}x{_1} + \theta{_2}x{_2} + \theta{_3}x{_3}+ ....+\theta{_n}x{_n}) (\theta{_1} + \theta{_2}+ \theta{_3}+...+\theta{_n} = 1)

仔细观察上式,如果\theta{_n}看做概率,f({x{_n}})看做分布函数,那么左边就是分布函数的期望,右边是变量期望的函数值,即

E[f(x{_n})] \geqslant f(E[x{_n}])

参考:

1 《凸优化》王书宁

2  https://www.jianshu.com/p/248be25393b7

3  https://blog.csdn.net/feilong_csdn/article/details/83476277

4  https://wenku.baidu.com/view/9fe0fb270722192e4536f6fd.html

5  https://zh.wikipedia.org/zh-cn/%E5%87%B8%E5%87%BD%E6%95%B0

 

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值